圆锥的体积公式是 $\frac{1}{3}\pi r^2h$,其中 $r$ 是圆锥底面的半径,$h$ 是圆锥的高。这个公式表明,圆锥的体积是圆柱的三分之一。
为什么圆锥的体积是圆柱的三分之一呢?我们可以这样理解:圆锥是圆柱的一部分,而圆柱的体积是 $\pi r^2h$,所以圆锥的体积就是圆柱的体积的 $\frac{1}{3}$。
这个结论也可以通过数学归纳法得到证明。假设圆锥的体积是圆柱的 $\frac{1}{n}$,那么我们可以把圆锥分成若干个小圆柱,每个小圆柱的体积都是圆锥的 $\frac{1}{n}$。由于这些小圆柱是由圆锥切割得到的,所以它们一定可以拼起来组成原来的圆柱。也就是说,