FDTD与FDFD:波导色散特性分析及曲线图绘制教程

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:频域有限差分法(FDFD)和时域有限差分法(FDTD)是解决电磁场问题的两种核心数值模拟技术。本压缩包提供了使用这些方法分析电磁波在介质中传播和色散特性的完整计算案例和可视化结果。FDFD适用于分析频率稳定的系统,而FDTD适用于动态传播过程和宽频带问题。程序中包含的FDTD.m脚本文件,能够通过MATLAB执行模拟,并绘制出折射率或介电常数与频率的关系曲线,即色散曲线图,有助于理解材料对不同频率电磁波的响应。此外,还涉及到波导结构的色散特性分析,这对于设计高性能通信和光学设备至关重要。 FDTD

1. 频域有限差分法(FDFD)与时域有限差分法(FDTD)的区别与适用场景

1.1 FDFD与FDTD的基本原理

1.1.1 FDFD的理论基础和实现步骤

FDFD(频域有限差分法)是一种通过在频域中解决麦克斯韦方程组来模拟电磁场分布的技术。其核心思想是将连续的电磁场分解为一系列离散的频率成分,并对每个频率成分独立求解,从而获得整个频带内的电磁场分布。实现FDFD通常包括以下几个步骤:定义研究域、应用适当的边界条件、离散化研究域、求解离散化后的麦克斯韦方程组,并最终通过逆傅立叶变换(IFFT)从频域数据获得时域解。

1.1.2 FDTD的核心概念和模拟流程

FDTD(时域有限差分法)是基于直接在时域中对麦克斯韦方程组进行数值积分来模拟电磁场的时间演化。FDTD 方法的关键在于使用差分方程来近似微分方程,并通过时间步进的方式来跟踪电磁场的变化。模拟流程包括初始化电磁场和电流源、应用初始条件和边界条件、更新电场和磁场分量、重复迭代直到达到预定的模拟时间,以及后处理步骤以分析结果数据。

在撰写这些章节时,我们将会涉及到模拟软件的运行示例、参数设置、以及如何解释模拟结果等关键步骤,确保读者能够清晰理解每种方法的适用性、操作过程以及如何应用到实际问题中。

2. 色散特性的定义及其在电磁波传播中的重要性

2.1 色散现象的基本概念

色散现象是指在不同频率的电磁波通过某一介质时,其传播速度发生变化的现象。这导致了不同频率成分的波在介质中传播时出现相位变化和路径偏差,进而影响电磁波的传播特性。

2.1.1 色散的物理含义

色散是由于介质对不同频率电磁波的折射率不同所导致的。在光学中,这与介质的电子结构有关,而在电磁学中,它与材料的电磁特性相关。折射率n是光波在真空中的速度c与光波在介质中的速度v之比,即n=c/v。当光波的频率增加时,折射率可能会增加(正常色散)或减少(反常色散)。

2.1.2 色散与介质的相互作用

色散效应在介质中以波的形式传播,对于电磁波而言,色散引起的相位变化可表示为:

[ \Delta \phi = \frac{2\pi}{\lambda} n d ]

其中,λ是波长,n是介质的折射率,d是介质厚度。色散越强,不同波长的波在介质中的相位变化差越大。这一原理在设计光纤、波导和其他光学设备时极为重要,因为不同的色散特性会影响到设备的性能和应用。

2.2 色散对电磁波传播的影响

色散对电磁波传播的影响通常在信号传输和成像系统中最为显著。这种影响可以进一步细化为以下两个方面。

2.2.1 频率依赖性对传播的影响

由于色散的存在,信号中的不同频率分量将以不同的速度传播,导致信号的波形随传输距离的变化而变化。这种现象称为色散展宽。在长距离的通信系统中,如果没有适当的色散管理措施,色散效应可以显著降低信号的质量,限制系统的带宽和传输速率。

2.2.2 色散引起的波形失真与信号衰减

在电磁波传播过程中,色散不仅造成波形的失真,还可能引起信号能量的衰减。色散引起的波形失真会导致系统误码率增加,而信号衰减则限制了有效传输距离。因此,在设计通信系统时,需要采取适当的色散补偿技术,例如使用色散补偿光纤、色散补偿模块或者数字信号处理技术来减少色散的影响。

2.3 色散管理在现代通信中的作用

色散管理是现代通信技术中的一项关键技术,它对于保证信号质量和传输性能至关重要。下面将详细讨论色散管理在光纤通信和无线通信中的应用。

2.3.1 光纤通信中的色散补偿技术

在光纤通信系统中,色散补偿技术主要通过预补偿和后补偿两种方法来实现。预补偿通常在发射端引入色散相反特性的光纤或色散补偿模块(DCM),而后补偿则在接收端或者传输链路中的某个位置进行。现代光纤通信系统广泛利用色散补偿光纤(DCF)和光纤布喇格光栅(FBG)等技术,以及数字信号处理方法进行色散管理。

2.3.2 色散管理在无线通信中的应用

无线通信中的色散管理与光纤通信有所不同,它更加关注于多径效应和多普勒频移引起的色散。现代无线通信系统如4G和5G利用正交频分复用(OFDM)和自适应均衡技术等来对抗色散。这些技术能够提高无线信号的频率选择性,使得通信系统能够有效地在色散条件下维持高速和高质量的通信。

色散管理是现代通信系统保持其性能的关键。随着通信技术的发展,对色散管理的需求将越来越复杂,而相关技术的优化与创新也必将成为未来研究的重要方向。

3. FDTD模拟电磁波色散的过程和色散曲线图的绘制

3.1 FDTD模拟色散的算法实现

3.1.1 色散介质模型的建立

在有限差分时域法(FDTD)模拟中,色散介质的建立需要考虑电磁波在介质中传播时的色散特性。色散介质模型通常是基于色散关系的数学描述,以反映频率依赖的介电常数或磁导率。为了在FDTD算法中实现色散介质的模拟,我们可以使用色散介质的Debye模型、Lorentz模型或Drude模型等,这些模型可以利用特定的数学公式来表达频率依赖性。

在实现时,我们会利用麦克斯韦方程组来推导出时域中的有限差分方程。对于色散介质,需要将介质的色散特性融入到更新方程中,通常在Yee网格更新电场和磁场的值时考虑色散效应,引入色散项以修正电场或磁场的值。

3.1.2 FDTD中的色散处理技术

FDTD中的色散处理技术多种多样,其中最常用的包括辅助微分方程(ADE)方法和Z变换方法。ADE方法利用额外的方程来模拟色散效应,而Z变换方法则通过将差分方程从时域变换到Z域来实现色散的模拟。

在ADE方法中,会为每一种色散介质建立相应的辅助微分方程,这样就可以将色散介质的色散特性引入FDTD的迭代过程中。在迭代每一步时,需要同时计算电场、磁场以及辅助变量,使得模拟更接近实际的物理现象。

代码示例展示如何在FDTD代码中加入ADE方法处理色散:

% 定义辅助变量
Dxx = zeros(Nx+1, Ny, Nz);
Dyy = zeros(Nx, Ny+1, Nz);
Dzz = zeros(Nx, Ny, Nz+1);

% 辅助微分方程更新
for ex = 1:Nx
    for ey = 1:Ny
        for ez = 2:Nz-1
            % ADE更新,以Debye模型为例
            Dzz(ex, ey, ez) = ...
                Dzz(ex, ey, ez) + dt * (sigma_z * Ez(ex, ey, ez) - Dzz(ex, ey, ez)) ...
                + dt * (epsInf_z - eps_0) * Ez(ex, ey, ez);
        end
    end
end

% 电场更新
for ex = 2:Nx-1
    for ey = 2:Ny-1
        for ez = 2:Nz-1
            Ez(ex, ey, ez) = ...
                (1 - dt * (sigma_z - epsInf_z + eps_0) / (epsInf_z + Dzz(ex, ey, ez))) ...
                * Ez(ex, ey, ez) ...
                - (dt / (epsInf_z + Dzz(ex, ey, ez))) * (Hy(ex, ey, ez) - Hy(ex, ey+1, ez)) ...
                + (dt / (epsInf_z + Dzz(ex, ey, ez))) * (Hx(ex, ey, ez+1) - Hx(ex, ey, ez));
        end
    end
end

在上面的MATLAB代码中,我们利用Debye模型来模拟色散效应,其中 sigma_z , epsInf_z , eps_0 为与Debye模型相关的参数, Dzz 为辅助变量,代表材料中电位移矢量随时间变化的函数。在迭代过程中,每一步都会更新辅助变量,并利用其更新电场值。

3.2 色散曲线图的绘制方法

3.2.1 采样策略与数据平滑

绘制色散曲线图的过程涉及到电磁波频率与介质色散特性的关系分析。首先需要在FDTD模拟中针对一系列特定频率进行采样,这需要在模拟时设定不同的频率点,以此获得不同频率下的传播常数。

在数据采集完毕后,为了减少噪声和误差,我们通常需要对数据进行平滑处理。常用的平滑技术包括移动平均法、高斯滤波等。通过这些方法,可以去除或减轻数据中的波动,从而得到更加平滑、可信的色散曲线。

3.2.2 利用色散曲线优化模拟精度

色散曲线提供了模拟中色散介质传播特性的直观表示,有助于我们判断模拟的准确性和可靠性。通过对色散曲线进行分析,我们可以调整FDTD模拟中的关键参数,如网格尺寸、时间步长、边界条件等,以优化模拟精度。

为了有效利用色散曲线,可以采取的策略包括: 1. 确保在感兴趣的频段内采样足够密集。 2. 根据色散曲线的形状调整模拟参数,比如网格尺寸应足够小以捕捉高频率下的细节。 3. 与理论曲线或其他实验数据进行比较,用以验证模拟的准确性。

3.3 色散特性分析实例

3.3.1 不同材料色散特性的模拟对比

在FDTD模拟中,对于不同材料,其色散特性往往有显著差异。例如,对于非色散材料,其介电常数和磁导率在较宽的频率范围内保持常数;而对于色散材料,这些值则会随频率变化而改变。通过对比不同材料的色散特性,可以更深入地理解材料的电磁属性,以及如何在模拟中准确地表示这些属性。

3.3.2 色散曲线在实际问题中的应用

色散曲线在分析实际问题时具有重要作用,例如,在波导或天线设计中,根据材料的色散特性可以预测和优化电磁波的传播性能。在微波工程、光电子器件和通信系统中,色散曲线帮助我们理解和控制信号的频率相关损耗和失真问题,从而设计出更高效、更可靠的系统。

在进行色散特性分析时,通过结合实际问题的背景,我们可以利用FDTD模拟得到的色散曲线来指导实际的设计工作。例如,通过调整波导中材料的厚度和分布,可以达到色散曲线的最佳匹配,优化波导的性能,从而实现信号传输的效率和稳定性。

4. 波导结构的电磁模拟与色散特性分析

4.1 波导模拟的基本原理

4.1.1 波导的电磁理论基础

波导是传输电磁波的一种介质,其内部存在一系列特定模式的电磁波传播。在波导模拟中,首先要理解波导中电磁波的传播原理。波导中的电磁场可以看作是在波导边界条件下,沿着波导轴向传播的波。由于波导的截面尺寸和所传输电磁波的波长相当,因此波导内部的电磁场分布受到波导截面形状和边界条件的严格约束。对于理想无损耗波导,波导内的电磁波能够无衰减地传播。

在数学上,波导中的电磁场可以用麦克斯韦方程组来描述。通过求解麦克斯韦方程组,可以得到波导中电磁场的模式(模式即为波导中特定的电磁场分布)。模式的种类由波导的尺寸、形状以及波导材料的电磁特性决定。例如,矩形波导中的TE模式和TM模式。

4.1.2 波导模拟的边界条件设置

波导模拟的关键之一在于边界条件的设定。边界条件通常包括完美电导体(PBC)、完美磁导体(PMC)等。PBC假设边界上的电场切向分量为零,而PMC假设边界上的磁场切向分量为零。这些边界条件可以确保模拟的电磁波不会从波导边界泄漏出去。

在模拟过程中,波导两端常常设置为开放边界,允许电磁波自由进出。然而,为了确保模拟的稳定性和准确性,开放边界需要通过特定的方法来处理,如使用吸收边界条件(ABC),以减少反射波对模拟结果的影响。

4.2 波导结构中的色散特性分析

4.2.1 波导模式的色散关系

色散是指波速随频率变化的现象,它在波导中的体现就是波导模式的色散关系。在波导中传播的模式由于受到边界条件的限制,其传播常数(相位常数和衰减常数)会随频率变化。这种频率依赖性会导致波导模式在不同频率下具有不同的传播速度,从而影响波导中的信号传输特性。

为了分析波导模式的色散特性,通常需要求解电磁场的色散方程。通过改变模式的频率,可以绘制出相位常数(β)与频率(ω)的关系曲线,此曲线即为色散曲线。色散曲线能够直观地显示出波导模式的色散特性。

4.2.2 波导损耗与色散的关系研究

波导中的损耗主要由材料损耗和模式转换损耗组成。材料损耗与材料的电导率有关,而模式转换损耗通常出现在波导模态转换或者模式不完全匹配的情况下。色散与损耗共同作用,决定了波导传输性能的优劣。

对波导损耗的研究可以帮助我们优化波导设计,减少传输损耗。在模拟过程中,通过合理设置波导材料参数,可以模拟波导在不同损耗条件下的色散特性,进而设计出更符合实际需求的波导结构。

4.3 波导色散管理策略

4.3.1 波导设计中的色散优化

在波导设计中,为了提高传输效率,通常需要对色散进行优化。色散管理的基本策略包括选择合适的波导尺寸和形状,以及使用色散补偿技术。

色散补偿技术主要包括色散补偿光纤(DCF)和光纤布喇格光栅(FBG)。在波导设计中,可以通过引入适当的色散补偿元件,以实现对特定波导模式色散的补偿。色散补偿元件的选择和放置位置直接影响补偿效果。

4.3.2 多波导系统中的色散平衡技术

在复杂的波导系统中,如光通信中的波分复用(WDM)系统,多波导系统中各个波导的色散特性需要进行平衡。色散平衡是指通过适当的系统设计,使得系统中各个波导的色散特性相互平衡,从而使得整个系统具有更好的色散容限。

实现色散平衡的策略包括使用色散补偿光纤(DCF)、电光调制器以及使用特殊的波导设计,比如调整波导的厚度或者引入特殊的波导截面形状。这些策略通过调节波导的色散特性,最终达到降低整个系统色散的目的。

代码块与参数说明

在MATLAB中模拟波导结构的电磁场分布,可以使用以下示例代码。这段代码利用有限差分法(FDTD)原理,模拟了在矩形波导中的电磁波传播:

% 定义波导参数和模拟参数
a = 2.2e-3; % 波导宽度
b = 1.0e-3; % 波导高度
N = 200; % 网格点数
dx = a/N; dy = b/N;
dt = 1e-12; % 时间步长

% 初始化电磁场
Ex = zeros(N, N);
Ey = zeros(N, N);
Hz = zeros(N, N);

% FDTD主循环
for t = 1:1000
    % 执行Yee算法中的一步
    for ix = 2:N-1
        for iy = 2:N-1
            Hz(ix, iy) = Hz(ix, iy) + (Ex(ix+1, iy) - Ex(ix, iy))/dy - (Ey(ix, iy+1) - Ey(ix, iy))/dx;
        end
    end
    % 更新边界条件等操作
    % ...
    % 绘制结果
    figure; surf(Ex); title('Electric Field Ex in Waveguide'); 
end

上述代码展示了FDTD算法的简单实现,并未包含色散管理的具体代码逻辑。实际应用中,代码会更加复杂,并且需要增加色散补偿等优化技术。代码中, Ex , Ey , 和 Hz 分别代表了电磁波的电场和磁场分量。通过逐步更新这些分量,可以模拟出电磁波在波导中的传播行为。参数 a , b , N , dx , dy , 和 dt 分别代表波导的尺寸、网格划分及时间步长,它们需要根据实际问题合理选取以保证数值模拟的准确性和稳定性。

mermaid流程图

对于设计波导结构的过程,mermaid流程图可以用来描述波导设计与色散管理的流程,下面是一个简化的流程图示例:

graph TD
    A[开始] --> B[选择波导材料和尺寸]
    B --> C[模拟波导模式]
    C --> D[分析色散曲线]
    D --> |需要优化| E[调整波导参数]
    D --> |优化完成| F[实施色散补偿技术]
    E --> C
    F --> G[验证波导色散特性]
    G --> |不合格| E
    G --> |合格| H[完成波导设计]
    H --> I[集成到系统中]
    I --> J[结束]

该流程图展示了一个典型的设计与优化波导结构的流程,从选择波导材料开始,模拟波导模式,分析色散曲线,进行调整优化,直至完成波导设计,并将其集成到实际系统中。

5. MATLAB在FDTD模拟和色散曲线绘制中的应用

5.1 MATLAB在FDTD模拟中的作用

5.1.1 MATLAB的基本编程与仿真环境

MATLAB(Matrix Laboratory的缩写)是由MathWorks公司开发的一种高性能数值计算和可视化软件环境。它具有易用性、高效性、以及强大的数据可视化能力,这些特点使得MATLAB成为科学研究和工程应用中不可或缺的工具之一。MATLAB提供了一个包含大量内置函数和工具箱的开发环境,使得用户能够进行矩阵运算、数据可视化、算法开发以及高级图形用户界面设计等。

在FDTD模拟中,MATLAB可以被用作算法的实现平台。FDTD作为一种基于数值分析的模拟方法,其算法的实现需要大量矩阵计算和迭代过程,而MATLAB正是处理这类计算问题的理想选择。此外,MATLAB具备丰富的数学库和优化算法,能够有效提高模拟效率,并帮助研究者进行数据分析和结果验证。

5.1.2 MATLAB实现FDTD算法的案例分析

为了说明MATLAB如何在FDTD模拟中发挥作用,我们可以考虑一个简单的二维FDTD模拟案例。在这个案例中,我们将模拟一个二维空间内的电场传播情况,并使用MATLAB编写相应的仿真代码。

首先,我们需要定义空间和时间网格。然后,我们将初始化电磁场的初始条件,并设置合适的边界条件。在MATLAB中,我们可以使用 meshgrid 函数生成空间网格,使用 for 循环来执行时间迭代过程。

% 定义空间和时间步长
dx = 0.1; dt = 0.01;
% 计算网格点数量
Nx = 100; Ny = 100; Nt = 500;
% 定义时间步和空间步
x = linspace(0, 10, Nx);
y = linspace(0, 10, Ny);
[X, Y] = meshgrid(x, y);
T = linspace(0, 5, Nt);

% 初始化电场Ez和磁场Hx、Hy
Ez = zeros(Nx, Ny, Nt);
Hx = zeros(Nx-1, Ny, Nt);
Hy = zeros(Nx, Ny-1, Nt);

% 设置初始条件,例如Ez在中心点初始化
Ez(Nx/2, Ny/2, 1) = 1;

% 应用FDTD更新公式
for t = 1:Nt-1
    % 计算Hx
    Hx(2:end, :, t+1) = Hx(2:end, :, t) + (dt/dx) * (Ez(2:end, :, t) - Ez(1:end-1, :, t));
    % 计算Hy
    Hy(:, 2:end, t+1) = Hy(:, 2:end, t) + (dt/dy) * (Ez(:, 2:end, t) - Ez(:, 1:end-1, t));
    % 计算Ez
    Ez(:, :, t+1) = Ez(:, :, t) + (dt/dx) * (Hy(:, 1:end-1, t+1) - Hy(:, 2:end, t+1)) ...
        - (dt/dy) * (Hx(1:end-1, :, t+1) - Hx(2:end, :, t+1));
end

上面的代码片段提供了FDTD算法的一个基本框架,并演示了如何在MATLAB中实现。通过逐步迭代,可以模拟电磁波在一个二维空间的传播。这只是MATLAB在FDTD模拟中应用的一个简单示例,实际上通过扩展代码和引入更多功能,MATLAB可以用于更复杂的模拟任务。

5.2 MATLAB绘制色散曲线图的技巧

5.2.1 利用MATLAB进行数据处理与分析

MATLAB在数据处理和分析方面的功能非常强大。绘制色散曲线图首先需要从模拟结果中提取出波数(k)与频率(ω)的数据。在得到这些数据后,可以利用MATLAB内置的绘图函数,如 plot ,来直观地展示色散关系。

假设我们已经通过FDTD模拟得到了波数和频率的数据,我们可以使用以下MATLAB代码段来绘制色散曲线:

% 假设k和omega是已经计算好的波数和频率数组
k = [...]; % 波数数据
omega = [...]; % 频率数据

% 使用plot函数绘制色散曲线图
figure; % 创建一个新的图形窗口
plot(k, omega, 'b', 'LineWidth', 2);
xlabel('Wave Number (k)');
ylabel('Frequency (\omega)');
title('Dispersion Relation Curve');
grid on; % 显示网格

5.2.2 色散曲线图的自动化绘制流程

为了提高效率,我们可以将色散曲线的绘制过程自动化。MATLAB中的脚本和函数可以帮助我们实现这一目标。我们可以创建一个函数,该函数接受波数和频率数组作为输入,并自动绘制出色散曲线图。

function drawDispersionCurve(k, omega)
    % 检查输入数据是否为空
    if isempty(k) || isempty(omega)
        error('输入数组不能为空');
    end
    % 绘制色散曲线
    figure;
    plot(k, omega, 'b', 'LineWidth', 2);
    xlabel('Wave Number (k)');
    ylabel('Frequency (\omega)');
    title('Dispersion Relation Curve');
    grid on;
end

使用上述函数,我们只需将数据作为参数传递给 drawDispersionCurve ,即可得到图形化的色散关系展示。

5.3 MATLAB在电磁波模拟与色散研究的集成应用

5.3.1 MATLAB与其他仿真工具的协同工作

在复杂的电磁波模拟和色散研究中,MATLAB可以与专业的电磁仿真工具如CST、HFSS等协同工作。这些专业工具通常用于初步的模型建立和参数优化,而MATLAB则可以用于后续的数据处理、色散曲线的绘制、优化算法的实现以及结果的进一步分析。

例如,我们可以在CST中设计好波导结构,进行电磁场模拟后,将结果导出为数据文件。然后在MATLAB中导入这些数据,进行色散特性的分析和可视化。MATLAB与仿真工具之间的数据交换通常通过通用的数据格式如CSV、MAT或HDF5等实现。

5.3.2 实际案例:MATLAB在电磁波色散问题中的综合应用

假设我们在CST中模拟了一个特定波导结构的电磁特性,并获得了一系列色散数据。我们希望使用MATLAB来分析这些数据,并找到最优的波导设计。

在MATLAB中,我们可以首先导入这些数据,然后利用MATLAB的优化工具箱来调整波导的几何参数,以最小化色散。最终的目标是找到一个使得色散最小化的波导设计参数集。

为了实现上述目标,我们可能会采用以下步骤:

  1. 从CST导出色散数据到CSV文件。
  2. 在MATLAB中使用 csvread readtable 函数导入数据。
  3. 使用 fmincon ga (遗传算法)等MATLAB优化函数进行参数优化。
  4. 将优化后的参数回代到仿真模型中进行验证。
  5. 利用优化结果生成色散曲线图,进行进一步的分析。

以上就是MATLAB在电磁波模拟与色散研究中的集成应用的概述,它展示了MATLAB在电磁波问题研究中的多面性和强大功能。通过与其他仿真工具的协同工作以及在数据处理和优化分析中的应用,MATLAB能够显著提高电磁波模拟和色散特性研究的效率和质量。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:频域有限差分法(FDFD)和时域有限差分法(FDTD)是解决电磁场问题的两种核心数值模拟技术。本压缩包提供了使用这些方法分析电磁波在介质中传播和色散特性的完整计算案例和可视化结果。FDFD适用于分析频率稳定的系统,而FDTD适用于动态传播过程和宽频带问题。程序中包含的FDTD.m脚本文件,能够通过MATLAB执行模拟,并绘制出折射率或介电常数与频率的关系曲线,即色散曲线图,有助于理解材料对不同频率电磁波的响应。此外,还涉及到波导结构的色散特性分析,这对于设计高性能通信和光学设备至关重要。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值