在高考数学中,圆锥曲线往往是"计算量"的代名词,一般而言,圆锥曲线的大题在纯计算上至少会花10~15分钟,有的思路不清晰的题甚至会花上半个小时。而当圆锥曲线出现在小题时,就更令考生不知所措了——既不敢花大功夫爆算,也不能像有的题一样一眼看到很明显的思路。这是因为,圆锥曲线往往条件藏的比较深,考生不容易直接挖掘出题目中所含的信息。这里我们就针对圆锥曲线离心率取值范围专题进行一个讨论。
对椭圆
圆锥曲线离心率取值范围类题目让人感觉很难的一点原因在于:圆锥曲线的参数a、b是不清楚的,在计算时只能以参数形式出现。题目中引入1~2个其他参数时,未知参数的数量更是会达到3~4个,无疑会给人带来极大的压力。然而,在离心率取值范围计算类题目中,要大胆地带着a、b、c进行计算,只要a、b、c幂指数相等,他们实际是可以相互转化的。

拿到这道题,一时没有思路,唯一能看到的不等式只有直线AB斜率的取值范围,这和椭圆离心率又能沾上什么关系呢?我们不妨先来画个图。
画图过程中,我们可以发现M点应该位于椭圆外部,这就排除了一定的信息干扰。看到图之后,我们直接设直线l的方程为y=k(x-c),表示出M点坐标为(0,-ck)。
又已知
不等式关系在哪里?

这道题给出了a的取值范围,我们的问题是如何利用a的取值范围去求离心率e的取值范围。然而这道题不能用前面题目的方式建立仅含a、b、c三个数的不等式关系。这个题目中a和b有数值联系,b可以表示为a的函数。根据
实际上,椭圆方程