如果不处理inf
,可能导致报错:ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
示例代码
首先构造inf
,可以使用:np.inf
,也可以使用float("inf")
,其中inf
指无穷大,-inf
值无穷小
import pandas as pd
import numpy as np
dataframe = pd.DataFrame(data=[
[1, 2, np.inf],
[4, 5, None],
[7, 8, np.nan],
[10, 11, 12],
])
判断是否:全部的值都有限
np.all(np.isfinite(dataframe))
判断行、列是否有限:
np.isfinite(dataframe).all() # 判断这个维度的所有值 是否有限 True,True,False
np.isfinite(dataframe.T).all() # 判断每个数据的所有值 是否有限 F F F T,这里nan/None也不是有限的值
替换掉不是有限的值:
dataframe.replace(np.inf, "我曾是inf") # 局部精准的替换
删除值:
dataframe[np.isfinite(dataframe.T).all()] # 选择所有有限的数据行(删除inf,nan所在行)
dataframe.loc[:, np.isfinite(dataframe).all()] # 选择所有有限数据所在列(删除inf,nan所在列)
完整示例
import pandas as pd
import numpy as np
dataframe = pd.DataFrame(data=[
[1, 2, np.inf],
[4, 5, None],
[7, 8, np.nan],
[10, 11, 12],
])
# 判断全部的值都有限
np.all(np.isfinite(dataframe))
# 判断是否有限
np.isfinite(dataframe).all() # 判断这个维度的所有值 是否有限 True,True,False
np.isfinite(dataframe.T).all() # 判断每个数据的所有值 是否有限 F F F T,这里nan/None也不是有限的值
# 替换掉不是有限的值
dataframe.replace(np.inf, "我曾是inf") # 局部精准的替换
# 删除值
dataframe[np.isfinite(dataframe.T).all()] # 选择所有有限的数据行(删除inf,nan所在行)
dataframe.loc[:, np.isfinite(dataframe).all()] # 选择所有有限数据所在列(删除inf,nan所在列)