package com.mybatis.plus.utils;
import org.apache.commons.lang3.StringUtils;public classStringUtil {/**
* java高效比较两个字符串的相似度算法
*
*
*
* 解决方法:
*
* Levenshtein Distance,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。
*
* 许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
*
* 编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。
*
*
*
* 算法原理:
*
* 该算法的解决是基于动态规划的思想,具体如下:
*
* 设 s 的长度为 n,t 的长度为 m。如果 n = 0,则返回 m 并退出;如果 m=0,则返回 n 并退出。否则构建一个数组 d[0..m, 0..n]。
*
* 将第0行初始化为 0..n,第0列初始化为0..m。
*
* 依次检查 s 的每个字母(i=1..n)。
*
* 依次检查 t 的每个字母(j=1..m)。
*
* 如果 s[i]=t[j],则 cost=0;如果 s[i]!=t[j],则 cost=1。将 d[i,j] 设置为以下三个值中的最小值:
*
* 紧邻当前格上方的格的值加一,即 d[i-1,j]+1
*
* 紧邻当前格左方的格的值加一,即 d[i,j-1]+1
*
* 当前格左上方的格的值加cost,即 d[i-1,j-1]+cost
*
* 重复3-6步直到循环结束。d[n,m]即为莱茵斯坦距离。*/
/**
* 比较两个字符串的相识度
*
*
* 核心算法:用一个二维数组记录每个字符串是否相同,如果相同记为0,不相同记为1,每行每列相同个数累加
*
*
* 则数组最后一个数为不相同的总数,从而判断这两个字符的相识度*/
private static intcompare(String str, String target) {int d[][]; //矩阵
int n =str.length();int m =target.length();int i; //遍历str的
int j; //遍历target的
char ch1; //str的
char ch2; //target的
int temp; //记录相同字符,在某个矩阵位置值的增量,不是0就是1
if (n == 0) {returnm;
}if (m == 0) {returnn;
}
d= new int[n + 1][m + 1];//初始化第一列
for (i = 0; i <= n; i++) {
d[i][0] =i;
}//初始化第一行
for (j = 0; j <= m; j++) {
d[0][j] =j;
}for (i = 1; i <= n; i++) {//遍历str
ch1= str.charAt(i - 1);//去匹配target
for (j = 1; j <= m; j++) {
ch2= target.charAt(j - 1);if (ch1 == ch2 || ch1 == ch2 + 32 || ch1 + 32 ==ch2) {
temp= 0;
}else{
temp= 1;
}//左边+1,上边+1, 左上角+temp取最小
d[i][j]= min(d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] +temp);
}
}returnd[n][m];
}/**
* 获取最小的值*/
private static int min(int one, int two, intthree) {return (one = one < two ? one : two) < three ?one : three;
}/**
* 获取两字符串的相似度*/
public static floatgetSimilarityRatio(String str, String target) {if (StringUtils.isEmpty(str) ||StringUtils.isEmpty(target)) {return 0;
}int max =Math.max(str.length(), target.length());return 1 - (float) compare(str, target) /max;
}public static voidmain(String[] args) {
String a= "国家税务总局福建省税务局";
String b= "国家税务总局安徽省税务局";
System.out.println("相似度:" +getSimilarityRatio(a, b));
}
}