数莓派雷达测据python_Python 实现帕累托,漏斗,雷达图,可收藏当做模板使用...

本文介绍了如何使用Python的pyecharts库创建帕累托图、转化漏斗图和RFM分析的雷达图。通过实例展示了商品销售数据的帕累托分析,用户行为转化漏斗,以及客户消费的RFM模型。提供了详细的数据处理和图表绘制过程。
摘要由CSDN通过智能技术生成

前言

用 Python 中的 pyecharts 库实现帕累托图,转化漏斗图,RFM 客户分类以后的雷达图。

可收藏当做模板使用,先来看看实现效果:

07d03395e7eed9e02436252f4575da0a.png

2bd4719c4e7330dd664307209d01a5db.png

169436f16912a406b82db8da9207441e.png

帕累托

帕累托分析法或巴雷托分析法、柏拉图分析、主次因分析法 、平常也称之为「80 对 20」规则,即二八法则。

现在我们有一份商品销售数据,包含店名,风格,品类,销售日期,销售额等字段。

我们以品类,销售额,使用帕累托分析法分析出销售额主要来源于哪部分 80% 的商品。

先读取数据:

8e3b0a8b0f33c087f7c84d20382cab8b.png

首先需要以商品进行分组计算,计算出每种商品的累计销售额,再以销售额降序排序。

因为需要计算累计占比,所以需要计算所有商品的销售额总和。

增加一列计算累计销售额占比,增加一列标记到此类商品时,销售额占比是否达到 80%,处理代码如下:

a18791074bf89bd6fc12cfd857ad4efe.png

在得到绘制帕累托图的数据后,可以开始绘制了,以商品为横坐标,销售额与累计占比为纵坐标,即双坐标轴,销售额以柱状图显示,并且累计销售额占比达到 80% 的以另一种一色区分,累计占比以折线图显示

绘制代码有点长,还用到了 js 代码,就不贴了,完成后以后只需要修改数据就可以快速得到了:

e5b4865a7bed7ec0b498c9a13250bf81.png

漏斗转化

转化漏斗模型,是分析用户使用某项业务时,经过一系列步骤转化效果的方法。

转化分析的本质是为了促进企业的核心业务的流通,最大化每个营销漏斗的转化率。

在理想情况下,用户会沿着产品设计的路径到达最终目标事件,但实际情况是用户的行为路径是多种多样。

通过埋点事件配置关键业务路径,可以分析多种业务场景下转化和流失的情况,不仅找出产品潜在问题的位置,还可以定位每个环节流失用户,进而定向营销促转化。

现在有一份电商数据,用户行为数据,从浏览到交易成功数据,以此数据绘制每个行为阶段转化情况。

浏览商品-搜索-添加购物车-下单-付款-交易成功,每个环节的的转化率=此阶段人数/上一阶段人数。

导入数据:

d194fc19b81ac844dc7e3e4c084abec0.png

计算每个阶段的总人数,增加一列,每个阶段对应上一阶段的人数,最后计算每个阶段的转化率:

3659e048bca669c21d9066d2dd25f1d0.png

最后绘制转化漏斗图,每个阶段的标签可以看到对应百分比及对应人数:

1cafbcaa63a41b078f98c546665d9398.png

cf09bb6901c0603b4d46ffd4738b51f8.png

RFM

RFM 分析是美国数据库营销研究所提出的一种简单实用客户分析方法,发现客户数据中有三个神奇的要素:

最近一次消费时间(R):客户距离最近的一次采购时间的间隔。

最近一段时间内消费频次(F):指客户在限定的期间内所购买的次数。

最近一段时间内消费金额(M):客户的消费能力,通常以客户单次的平均消费金额作为衡量指标。

RFM 分析就是通过三个关键指标对客户进行观察和分类,判断每类细分用户的价值。针对不同的特征的客户进行相应的营销策略。

现在有一份数据,包含客户消费时间,金额,名称,导入数据:

34f70b5339e4bb844c29e254c95216be.png

导入数据后根据以上三个指标进行计算,先计算每条消费记录离现在的天数,再以每个用户计算最小天数,累计消费,消费次数,即每个用户的 RFM。

再计算平均 R,F,M 的值,大于平均的标记 1,最后可以得到 8 种分类,以此结果分组计算计算每种类别客户的三个指标的平均值:

feb4585844abcdc2cb3a430c1fba2d4d.png

最后绘制雷达图:

ed822875ce148d78f4ccfe9ef5c9c279.png

8b6962c30cd914e7ee58393e026c881b.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值