pandas中size方法_Pandas基本属性和方法

本文详细介绍了Pandas中的Series和DataFrame的基本属性和方法,如size、axes、dtypes、empty、ndim、shape等,并通过实例展示了如何使用这些属性和方法进行数据操作。此外,还讲解了head()和tail()方法用于快速查看数据集的前n行和后n行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Series基本功能:

axes 返回行轴标签列表。

dtype 返回对象的数据类型(dtype)。

empty 如果系列为空,则返回True。

ndim 返回底层数据的维数,默认定义:1。

size 返回基础数据中的元素数。

values 将系列作为ndarray返回。

head() 返回前n行。

tail() 返回最后n行。

DataFrame基本功能

T 转置行和列。

axes 返回一个列,行轴标签和列轴标签作为唯一的成员。

dtypes 返回此对象中的数据类型(dtypes)。

empty 如果NDFrame完全为空[无项目],则返回为True; 如果任何轴的长度为0。

ndim 轴/数组维度大小。

shape 返回表示DataFrame的维度的元组。

size NDFrame中的元素数。

values NDFrame的Numpy表示。

head()返回开头前n行。

tail()返回最后n行。

T(转置)

返回DataFrame的转置。行和列将交换。

实例:

import pandas as pd

import numpy as np

# Create a Dictionary of series

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),

'Age':pd.Series([25,26,25,23,30,29,23]),

'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

# Create a DataFrame

df = pd.DataFrame(d)

print ("The transpose of the data series is:")

print df.T

执行上面示例代码,得到以下结果 -

The transpose of the data series is:

0 1 2 3 4 5 6

Age 25 26 25 23 30 29 23

Name Tom James Ricky Vin Steve Minsu Jack

Rating 4.23 3.24 3.98 2.56 3.2 4.6 3.8

axes

返回行轴标签和列轴标签列表

实例1:

#Create a series with 100 random numbers

s = pd.Series(np.random.randn(4))

print ("The axes are:")

print s.axes

执行上面示例代码,得到以下输出结果 -

The axes are:

[RangeIndex(start=0, stop=4, step=1)]

实例2:

#Create a Dictionary of series

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),

'Age':pd.Series([25,26,25,23,30,29,23]),

'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame

df = pd.DataFrame(d)

print ("Row axis labels and column axis labels are:")

print df.axes

执行上面示例代码,得到以下结果 -

Row axis labels and column axis labels are:

[RangeIndex(start=0, stop=7, step=1), Index([u'Age', u'Name', u'Rating'],

dtype='object')]

dtypes

返回每列的数据类型

#Create a Dictionary of series

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),

'Age':pd.Series([25,26,25,23,30,29,23]),

'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame

df = pd.DataFrame(d)

print ("The data types of each column are:")

print df.dtypes

执行上面示例代码,得到以下结果 -

The data types of each column are:

Age int64

Name object

Rating float64

dtype: object

empty

返回布尔值,表示对象是否为空; 返回True表示对象为空。

#Create a Dictionary of series

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),

'Age':pd.Series([25,26,25,23,30,29,23]),

'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame

df = pd.DataFrame(d)

print ("Is the object empty?")

print df.empty

执行上面示例代码,得到以下结果 -

Is the object empty?

False

ndim

返回对象的维数。

#Create a Dictionary of series

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),

'Age':pd.Series([25,26,25,23,30,29,23]),

'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame

df = pd.DataFrame(d)

print ("Our object is:")

print df

print ("The dimension of the object is:")

print df.ndim

执行上面示例代码,得到以下结果 -

Our object is:

Age Name Rating

0 25 Tom 4.23

1 26 James 3.24

2 25 Ricky 3.98

3 23 Vin 2.56

4 30 Steve 3.20

5 29 Minsu 4.60

6 23 Jack 3.80

The dimension of the object is:

2

shape

其中a表示行数,b表示列数。

#Create a Dictionary of series

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),

'Age':pd.Series([25,26,25,23,30,29,23]),

'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame

df = pd.DataFrame(d)

print ("Our object is:")

print df

print ("The shape of the object is:")

print df.shape

执行上面示例代码,得到以下结果 -

Our object is:

Age Name Rating

0 25 Tom 4.23

1 26 James 3.24

2 25 Ricky 3.98

3 23 Vin 2.56

4 30 Steve 3.20

5 29 Minsu 4.60

6 23 Jack 3.80

The shape of the object is:

(7, 3)

size

返回元素数。

#Create a Dictionary of series

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),

'Age':pd.Series([25,26,25,23,30,29,23]),

'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame

df = pd.DataFrame(d)

print ("Our object is:")

print df

print ("The total number of elements in our object is:")

print df.size

执行上面示例代码,得到以下结果 -

Our object is:

Age Name Rating

0 25 Tom 4.23

1 26 James 3.24

2 25 Ricky 3.98

3 23 Vin 2.56

4 30 Steve 3.20

5 29 Minsu 4.60

6 23 Jack 3.80

The total number of elements in our object is:

21

values

以数组形式返回实际数据值。

实例1:

以数组形式返回系列中的实际数据值。

#Create a series with 4 random numbers

s = pd.Series(np.random.randn(4))

print ("The actual data series is:")

print s.values

执行上面示例代码,得到以下结果 -

The actual data series is:

[ 1.78737302 -0.60515881 0.18047664 -0.1409218 ]

实例2:

将DataFrame中的实际数据作为NDarray返回

#Create a Dictionary of series

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),

'Age':pd.Series([25,26,25,23,30,29,23]),

'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame

df = pd.DataFrame(d)

print ("The actual data in our data frame is:")

print df.values

执行上面示例代码,得到以下结果 -

The actual data in our data frame is:

[[25 'Tom' 4.23]

[26 'James' 3.24]

[25 'Ricky' 3.98]

[23 'Vin' 2.56]

[30 'Steve' 3.2]

[29 'Minsu' 4.6]

[23 'Jack' 3.8]]

head()和tail()

要查看DataFrame对象的小样本,可使用head()和tail()方法。head()返回前n行(观察索引值)。显示元素的默认数量为5,但可以传递自定义数字值。tail()返回最后n行(观察索引值)。显示元素的默认数量为5.

实例:

#Create a Dictionary of series

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack']),

'Age':pd.Series([25,26,25,23,30,29,23]),

'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}

#Create a DataFrame

df = pd.DataFrame(d)

print ("Our data frame is:")

print (df)

print ("The first two rows of the data frame is:")

print (df.head(2))

print ("The last two rows of the data frame is:")

print (df.tail(2))

输出:

Our data frame is:

Name Age Rating

0 Tom 25 4.23

1 James 26 3.24

2 Ricky 25 3.98

3 Vin 23 2.56

4 Steve 30 3.20

5 Minsu 29 4.60

6 Jack 23 3.80

The first two rows of the data frame is:

Name Age Rating

0 Tom 25 4.23

1 James 26 3.24

The last two rows of the data frame is:

Name Age Rating

5 Minsu 29 4.6

6 Jack 23 3.8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值