小波与傅里叶分析基础_小波变换1:基础介绍

本文主要介绍小波分析的相关内容,小波分析在声发射中的应用后面再讲。本文所记录内容主要是傅里叶变换、傅里叶变换分析 非平稳信号的不足、小波变换的相对优势、什么是小波变换。本文默认您已经学习过高等数学的相关知识,知道傅里叶变换的原理和概念、了解时域/频域的概念。

1、傅里叶变换

d2608e36300690289da03a4519419584.png

傅里叶变换是将一个时域信号用不同频率/相位的三角波函数进行拟合。过程如上图所示,最左边的是原始信号,右边是不同频率的三角波信号,不同频率的三角波信号叠加之后可以近似拟合成原始信号。

从正面看有人如下图所示

d29b4ca935b611f8a36d5d76c718ec77.png

2、傅里叶变换分析非平稳信号的不足

如下图所示,左上的信号是50/120Hz信号在幅度上的叠加,右上是50/120Hz信号在时间上的叠加当时在两者的频率谱上是发现不小区别的。就是说傅里叶变换的时间分辨率很差。

ee15f65824d68af5edd6dbf45b6cc26f.png

3、小波变换的优势

我们用小波变换分解一下波形,下图1是S1的分解,下图2是S2的分解,能够在时域上很清晰的看到频率的变化。 声发射信号通常都是非平稳的信号,所以小波变换相比于傅里叶变换在某些时候要更有助于信号的分析。

4cc2c4399a57dc666adb66232f873559.png

a116f952667d74f427cb50cd60a9c3f7.png

4、小波变换的原理

小波变换其实使用一个小波基取代了傅里叶变换中的三角函数。如下图,小波基是一个中间震荡,双边衰减的波形,可以对其进行缩放拉伸,之后拟合会原始波形。这样就会得到两个参数,一个是Y轴的压缩,一个是X轴的位移,正式X轴的位移让其具有了很高的时间上的频率分辨能力。

ee6e05781275f239ab3cf048ee2a928e.png

以上

如果您在文章末尾看到广告,麻烦动动手指点击一下,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值