TensorFlow2.0深度学习算法实战
安替-AnTi
研究生在读
展开
-
TensorFlow 2.0深度学习算法实战 第五章 Tensorflow进阶
第一章 人工智能绪论1.1 人工智能信息技术是人类历史上的第三次工业革命,计算机、互联网、智能家居等技术的普及极大地方便了人们的日常生活。通过编程的方式,人类可以将提前设计好的交互逻辑重复且快速地执行,从而将人类从简单枯燥的重复劳动任务中解脱出来。但是对于需要较高智能的任务,如人脸识别,聊天机器人,自动驾驶等任务,很难设计明确的逻辑规则,传统的编程方式显得力不从心,而人工智能技术是有望...原创 2020-03-25 10:15:52 · 4195 阅读 · 0 评论 -
TensorFlow 2.0深度学习算法实战 第四章 Tensorflow基础
第四章 Tensorflow基础4.1 数据类型4.1.1 数值类型4.1.2 字符串类型4.1.3 布尔类型4.2 数值精度4.2.1 读取精度4.2.2 类型转换4.3 待优化张量4.4 创建张量4.4.1 从 Numpy, List 对象创建4.4.2 创建全 0,全 1 张量4.4.3 创建自定义数值张量4.4.4 创建已知分布的张量4.4.5 创建序列4.5 张量的典型应用4.5.1 标量4.5.2 向量4.5.3 矩阵4.5.4 三维张量4.5.5 4维张量4.6 索引与切片4.6.1 索引4原创 2020-08-30 23:12:10 · 1449 阅读 · 0 评论 -
TensorFlow 2.0深度学习算法实战 第三章 分类问题
第三章 分类问题3.1 手写数字图片数据集3.2 模型构建3.3 误差计算3.4 真的解决了吗3.5 非线性模型3.6 表达能力3.7 优化方法3.8 手写数字图片识别体验3.9 小结参考文献在人工智能上花一年时间,这足以让人相信上帝的存在。−艾伦·佩利前面已经介绍了用于连续值预测的线性回归模型,现在我们来挑战分类问题。分类问题的一个典型应用就是教会机器如何去自动识别图片中物体的种类。考虑图片分类中最简单的任务之一:0~9 数字图片识别,它相对简单,而且也具有非常广泛的应用价值,比如邮政编码、快递单原创 2020-08-30 09:47:24 · 2061 阅读 · 0 评论 -
TensorFlow 2.0深度学习算法实战 第二章 回归问题
第二章 回归问题第2章 回归问题2.1 神经元模型2.2 优化方法2.3 线性模型实战2.4 线性回归第2章 回归问题有些人担心人工智能会让人类觉得自卑,但是实际上,即使是看到一朵花,我们也应该或多或少感到一些自愧不如。−艾伦·凯2.1 神经元模型成年人大脑中包含了约 1000 亿个神经元,每个神经元通过树突获取输入信号,通过轴突传递输出信号,神经元之间相互连接构成了巨大的神经网络,从而形成了人脑的感知和意识基础,图 2.1 是一种典型的生物神经元结构。1943 年,心理学家沃伦·麦卡洛克(Wa原创 2020-08-30 08:11:30 · 1378 阅读 · 3 评论 -
TensorFlow 2.0深度学习算法实战 第一章 人工智能绪论
第一章 人工智能绪论1.1 人工智能1.1.1 人工智能1.1.2 机器学习1.1.3 神经网络与深度学习1.2 神经网络发展简史1.2.1 浅层神经网络1.2.2 深度学习1.3 深度学习特点1.3.1 数据量1.3.2 计算力1.3.3 网络规模1.3.4 通用智能1.4 深度学习应用1.4.1 计算机视觉1.4.2 自然语言处理1.4.3 强化学习1.5 深度学习框架1.5.1 主流框架1.5.2 TensorFlow 2 与 1.x1.5.3 功能演示1.6 开发环境安装1.6.1 Anaconda原创 2020-08-29 15:37:42 · 4397 阅读 · 0 评论 -
TensorFlow 2.0深度学习算法实战 第15章 自定义数据集
在人工智能上花一年时间,这足以让人相信上帝的存在。−艾伦·佩利深度学习已经被广泛地应用在医疗、生物、金融等各行各业中,并且被部署到网络端、移动端等各种平台上。前面我们在介绍算法时,使用的数据集大部份为常用的经典数据集,可以通过 TensorFlow 几行代码即可完成数据集的下载、加载以及预处理工作,大大地提升了算法的研究效率。在实际应用中,针对于不同的应用场景,算法的数据集也各不相同。那么针...原创 2020-04-14 10:01:16 · 3657 阅读 · 2 评论 -
TensorFlow 2.0深度学习算法实战---第13章 生成对抗网络
我不能创造的事物,我就还没有完全理解它。−理查德·費曼在生成对抗网络(Generative Adversarial Network,简称 GAN)发明之前,变分自编码器被认为是理论完备,实现简单,使用神经网络训练起来很稳定,生成的图片逼近度也较高,但是人眼还是可以很轻易地分辨出真实图片与机器生成的图片。2014 年,Université de Montréal 大学 Yoshua Beng...原创 2020-04-11 14:24:14 · 3347 阅读 · 1 评论 -
TensorFlow 2.0深度学习算法实战教材---第12章 自编码器
假设机器学习是一个蛋糕,强化学习是蛋糕上的樱桃,监督学习是外面的糖衣,无监督学习则是蛋糕本体。—Yann LeCun前面我们介绍了在给出样本及其的标签的情况下,神经网络如何学习的算法,这类算法需要学习的是在给定样本????下的条件概率????(????|????)。在社交网络蓬勃发展的今天,获取海量的样本数据????,如照片、语音、文本等,是相对容易的,但困难的是获取这些数据所对应的标签信息,例如机器翻译,除了收集源语言...原创 2020-04-07 17:36:15 · 1168 阅读 · 0 评论 -
TensorFlow 2.0深度学习算法实战教材---第11章 循环神经网络
人工智能的强力崛起,可能是人类历史上最好的事情,也可能是最糟糕的事情。−史蒂芬•霍金卷积神经网络利用数据的局部相关性和权值共享的思想大大减少了网络的参数量,非常适合于图片这种具有空间(Spatial)局部相关性的数据,已经被成功地应用到计算机视觉领域的一系列任务上。自然界的信号除了具有空间维度之外,还有一个时间(Temporal)维度。具有时间维度的信号非常常见,比如我们正在阅读的文本、说话...原创 2020-04-06 17:17:48 · 1897 阅读 · 0 评论 -
TensorFlow 2.0深度学习算法实战 第十章 卷积神经网络
当前人工智能还未达到人类 5 岁水平,不过在感知方面进步飞快。未来在机器语音、视觉识别领域,五到十年内超越人类没有悬念。−沈向洋我们已经介绍了神经网络的基础理论、TensorFlow 的使用方法以及最基本的全连接层网络模型,对神经网络有了较为全面、深入的理解。但是对于深度学习,我们尚存一丝疑惑。深度学习的深度是指网络的层数较深,一般有 5 层以上,而目前所介绍的神经网络层数大都实现为 5 层...原创 2020-04-04 22:20:02 · 3383 阅读 · 1 评论 -
TensorFlow 2.0深度学习算法实战 第九章 过拟合
一切都应该尽可能地简单,但不能过于简单。 —艾伯特·爱因斯坦机器学习的主要目的是从训练集上学习到数据的真实模型,从而能够在未见过的测试集上也能够表现良好,我们把这种能力叫做泛化能力。通常来说,训练集和测试集都采样自某个相同的数据分布????(????)。采样到的样本是相互独立的,但是又来自于相同的分布,我们把这种假设叫做独立同分布假设(Independent Identical Distribution...原创 2020-03-30 16:26:57 · 2033 阅读 · 0 评论 -
TensorFlow 2.0深度学习算法实战第八章 Keras高层接口
人工智能难题不仅是计算机科学问题,更是数学、认知 科学和哲学问题。− François CholletKeras 是一个主要由 Python 语言开发的开源神经网络计算库,最初由 François Chollet编写,它被设计为高度模块化和易扩展的高层神经网络接口,使得用户可以不需要过多的专业知识就可以简洁、快速地完成模型的搭建与训练。Keras 库分为前端和后端,其中后端一般是调用现有的深...原创 2020-03-29 17:24:32 · 1846 阅读 · 0 评论 -
TensorFlow 2.0深度学习算法实战 第七章 反向传播算法
第7章 反向传播算法The longer you can look back, the farther you can look forward. - 丘吉尔第 6 章我们已经系统地介绍完基础的神经网络算法:从输入和输出的表示开始,介绍感知机的模型,介绍多输入、多输出的全连接网络层,然后扩展至多层神经网络;介绍了针对不同的问题场景下输出层的设计,最后介绍常用的损失函数,及实现方法。本章我...原创 2020-03-28 15:40:25 · 1790 阅读 · 0 评论 -
TensorFlow 2.0深度学习算法实战 第六章 神经网络
第6章 神经网络DL is essentially a new style of programming–“differentiable programming”–and the field is trying to work out the reusable constructs in this style. We have some: convolution, pooling,LSTM,G...原创 2020-03-26 12:07:56 · 2076 阅读 · 3 评论