大家好!

我是来自厦门市民立小学的曾焕辉,是“一课研究”第17小组的成员,很高兴在“一课研究”与您相遇。
2
本期内容有哪些1.听一听:
平行四边形面积计算公式推导中用到的方法或原理
——选自《一课研究》丛书
2.读一读:
平行四边形面积不能邻边相乘的四种例证
3.看一看:
平行四边形几种特征(福尔摩斯故事)
3
轻轻松松听听书平行四边形面积计算公式推导中用到的方法或原理
——选自《一课研究》丛书
4
坚持阅读八分钟
【研究背景】

学生初步面对平行四边形面积这一新问题时会想到底×高吗?从学生的经验上看,这是否是一个很自然的认知?
笔者在新授课之前做了如下前测:
下面长方形和平行四边形哪个面积大?
怎么量?怎么计算?

量得数据如图所示。
以笔者所在城市小学为样本,年段203位学生,测试结果如下表:
(百分数保留一位小数)

不考虑样本大小的前提下,这是一个很有趣的数据,因为有86.6%的学生都知道用底乘高的方法来计算平行四边形的面积。有趣的原因在于笔者参考了不少案例,那些案例中绝大多数体现学生最初常用的方法是邻边相乘,为什么会有这种明显差别呢?
为此,笔者通过一个问题书面采访了这86.6%的学生。
问题如下:你为什么用底乘高计算平行四边形面积?
得到如下结论:“爸爸、妈妈等其他长辈教的”、“各种补习班提前学的”、“网络学的”……这类的学生占96%,剩余4%学生是猜测。而这96%学生里有46位学生能说出底乘高方法的道理,占所有学生的22.7%。
所以,从学生经验上看,求平行四边形面积用底乘高的方法并不是学生自然的认知。
学生为什么会想到邻边相乘的方法呢?通过口头访问(人数少),得到的结论和参考的案例类似:“长方形和正方形的面积都是长乘宽,所以这个形状也应该用这种方法”、“平行四边形是特殊的长方形,所以我觉得用长乘宽比较合适”、“平行四边形拉起来就是个长方形,所以我就用计算长方形面积的算法来计算它”……
所以,正方形、长方形面积的计算方法的学习经验有很大可能成为学习平行四边形面积的负迁移。
顺着学生的思维经验,研究验证平行四边形面积用邻边相乘不成立的方法是有必要的。

【研究过程】

笔者在这里展示小学阶段可以在课堂渗透的三种方法和一种上位知识方法来验证平行四边形面积用邻边相乘不成立。
1、数格子


如图,学生两种数格子方法都可以得到邻边相乘不成立的结论。数格子可以说是一种最原始、最简单的方法,正因为它原始、简单,所以最接近本质,所得到的结论牢不可破,而且我们可以用这个方法去推理得到其他方法。下面要介绍的两种方法可以在数格子基础上进行推理验证。
2、拉伸成长方形进行对比

如图,通过将平行四边形右边一块阴影的长方形平移到左边形成一个新的长方形,和拉伸后的长方形通过格子图对比,明显变小了。

其实这个方法去掉格子图,笔者曾经在黑板演示,学生也可以很明显的看出拉伸后的长方形面积比原来平行四边形面积大。
3、等底等高不等邻边的两个平行四边形进行对比



如图1,(图中两种颜色平行四边形重叠,用于拉伸对比)先通过数格子数出蓝色虚线平行四边形面积是18cm²,拉伸出红色平行四边形后再通过数格子数出红色实线平四边形面积也是18cm²,由图2可知线段b明显大于线段c,如果用邻边相乘的方法求两个平行四边形面积,就会得到ab>ac,和数格子得到面积相等的结论矛盾。
4、上位知识方法的初步了解

高中数学中平行四边形面积S = absinα(a和b是平行四边形两条邻边,α是这两条邻边之间的夹角),当α=90°时,sinα=1,此时平行四边形即为长方形;当α≠90°时,sinα的值都是小于1的数,即此时平行四边形面积比当α=90°时的长方形面积小。所以简单的邻边相乘得到的面积会比实际的平行四边形面积大。

5
看一看:
平行四边形几种特征(福尔摩斯故事)
平行四边形先生对福尔摩斯说:“我们家哪有这么多孩子呀!都说你是神探,你能从中辨别出哪些是我们平行四边形家族的成员吗?”
神探福尔摩斯答道:“那我就试试吧!不过我有个要求,他们必须说说各自的特征。”四边形1说:“我的两组对边分别平行。”
福尔摩斯判断说:“这个是。”四边形2说:“我的两组对边分别相等。”
福尔摩斯判断说:“这个是。”四边形3说:“我有一组对边平行且相等。”
福尔摩斯判断说:“这个是。”四边形4说:“我的两组对边角分别相等。”
福尔摩斯判断说:“这个是。”四边形5说:“我的对角线互相平分。”
福尔摩斯判断说:“这个是。”四边形6说:“我有一组对边平行,另一组对边相等。” 福尔摩斯判断说:“这个不是。”四边形7说:“我有一组对边相等,且有一组对角相等。”
福尔摩斯判断说:“这个不是。”四边形8说:“我有一组对边平行,且有一组对角相等。”
福尔摩斯判断说:“这个是。”
"真是名副其实的神探。”平行四边形先生称赞道:“神探的判断完全正确,咱们回屋再叙。”

你若盛开 蝴蝶自来


审核人:陈方斌 陈通