device 查看tensor_Tensor数据操作

本文介绍了PyTorch中Tensor的创建、操作和设备使用。包括直接创建、使用方法创建、通过现有Tensor创建Tensor,以及查看Tensor的形状、大小。此外,还讲解了Tensor的加法、索引、形状改变、广播机制,并展示了Tensor与Numpy之间的转换。最后,探讨了在GPU和CPU上的运算,验证了GPU的运算速度远快于CPU。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

* torch.Tensor 存储和变换数据的工具

* Tensor与Ndarray多维数组类似,可提供GPU计算和自动求梯度

* 标量:0纬张量,一个数字

* 向量:1纬张量,[ ]

* 矩阵:2纬张量,[ [ ] ]

首先导入torch,查看版本号

importtorch#打印torch版本

print(torch.__version__)#查看是否支持GPUtorch.cuda.is_avaliable()

代码运行后的结果是:1.4.0

True

1.创建Tensor

1.11 直接创建

* torch.tensor(value)

* value:可以是任何维度的张量

print("创建一个标量5")

x= torch.tensor(5)print("创建一个向量[]")

y= torch.tensor([2,3])print("创建一个矩阵[ [ ] ]")

z= torch.tensor([[1,2],

[2,3]])print(x)print(y)print(z)

输出结果是:

创建一个标量5

创建一个向量[]

创建一个矩阵[ [ ] ]

tensor(5)

tensor([2, 3])

tensor([[1, 2],

[2, 3]])

1.2使用方法创建

* torch.empty(shape,dtype = type):创建未初始化的Tensor,可指定数据类型,dtype参数可省略

* torch.rand(shape) :创建随机矩阵

* torch.zeros(shape):创建0矩阵

* 创建维度均为2纬矩阵

print("创建二维未初始化矩阵")

A= torch.empty((2,2))print(A)print("创建随机矩阵")

B= torch.rand((2,2))print(B)print("创建0矩阵")

C= torch.zeros((2,2))print(C)

输出结果是:

创建二维未初始化矩阵

tensor([[0.0000e+00, 1.4279e+00],

[-9.3980e-11, 4.5908e-41]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值