最新扣子(Coze)案例教程:爆款小红书健康养生赛道图文,Deepseek+Coze工作流,3分钟批量生成100篇,完全免费教程

大家好,我是斜杠君。

👨‍💻 最近有很多同学想让我写一篇小红书健康养生赛道图文生成的教程,使用工作流可以批量生成图文。

今天斜杠君就带大家一起搭建一个智能体,可以快速批量的生成健康养生赛道的图文内容。

工作流智能体作用:

输入一个主题,例如「湿气越吃越少10种食物」或者「易瘦体质的8个习惯」等健康类主题,工作流自动批量生成图文。

首先我们来看一下生成图文的效果:

图片

图片

🎥 本期视频教程已上传至知识星球,有更详细的代码和提示词,欢迎大家加入和斜杠君学习,‍🧑‍🚀还有星球VIP群和大家一起讨论噢~

🤹 接下来,话不多说,斜杠君用最简单的方式教给大家。💖大家可以关注收藏,以免之后找不到,而且也不会错过我后面的教程。

一、创建工作流

1、首先新建一个工作流。

图片

2、开始节点

开始节点设置一个变量,输入健康养生主题。

图片

3、大模型节点

使用Deepseek-R1模型为需要生成的图文准备内容。

注意,这里大模型输出的内容要是一个json格式的数组对像,方便后面的批处理节点进行调用。

之前有很多同学提问,为什么批处理节点引用不到大模型节点输出的内容,就因为批处理节点的输入变量需要是一个数组,如果不是数组的话,是引用不到的。

图片

4、批处理节点

批处理节点的作用是引用大模型节点输出的内容,批量生成图片。

图片

5、批处理体

批处理体中使用了三个图像插件用来处理图片。

分别是图像生成,抠图插件和画板。

画板用来把内容组合成最后的图文内容。

图片

6、结束节点

结束节点用来把「批处理节点」生成的图文内容进行输出,输出的内容是一个图片的数组。

图片

二、创建智能体

1、创建一个智能体

图片

2、引入工作流

图片

3、绑定卡片

绑定一个卡片,用来显示工作流输出的图片。

关于卡片的使用和绑定方法,可以参考以下这篇教程:

👉️ 点击这里查看:最新扣子(Coze)实战案例:卡片系列教程之图片列表卡片,卡片的使用详细讲解,手把手教学,完全免费教程

图片

3、效果展示

图片

图片

到这里,小红书健康养生图文的智能体就搭建好了,大家快动手试试吧~ 

🎥 本期视频教程已上传至知识星球,有更详细的代码和提示词,欢迎大家加入和斜杠君学习,‍🧑‍🚀还有星球VIP群和大家一起讨论噢~

💖大家可以关注收藏,以免之后找不到,而且也不会错过我后面的教程噢~

原文地址_加入免费扣子学习群:最新扣子(Coze)案例教程:爆款小红书健康养生赛道图文,Deepseek+Coze工作流,3分钟批量生成100篇,完全免费教程

内容概要:本文详细分析了全球及中国财富管理市场的发展现状与未来趋势。全球财富管理市场起源于欧洲、发展于美国,美国财富管理市场经过百年发展,形成了以商业银行、综合财富管理平台和投资服务平台为代表的三类财富管理体系。中国财富管理市场正处于快速发展期,居民财富快速增长并向金融资产倾斜,资管新规引导市场健康发展。文中还探讨了中国财富管理市场的竞争格局,包括私人银行、银行理财、公募基金、券商资管、信托、第三方财富管理机构和互联网财富管理平台的发展情况。此外,公募基金投顾试点成为财富管理市场转型的重要探索,买方投顾模式逐步取代卖方投顾模式,AI赋能投顾业务,为行业发展带来新机遇。 适合人群:对财富管理行业感兴趣的投资者、金融从业者及研究机构。 使用场景及目标:①了解全球及中国财富管理市场的发展历程与现状;②掌握中国财富管理市场竞争格局及各机构的发展特点;③探索公募基金投顾试点对财富管理市场的转型意义及AI赋能投顾业务的应用前景。 阅读建议:本文内容详实,涵盖了财富管理市场的多个方面,建议读者重点关注中国财富管理市场的现状与发展趋势,特别是私人银行、银行理财、公募基金、券商资管等机构的具体发展情况,以及公募基金投顾试点和AI赋能投顾业务的创新模式。
### 使用 Coze 工作流实现从小红书批量提取数据 要通过 Coze 工作流实现从小红书平台批量提取数据的功能,可以按照以下方法设计流程。需要注意的是,由于应用获取的数据可能存在延迟以及排序逻辑上的局限性[^1],因此在实际操作过程中需额外验证所提取数据的准确性。 #### 数据抓取与处理 Coze 工作流支持多种自动化任务配置,其中包括网络爬虫、API调用等功能模块。以下是具体的技术方案: 1. **设置 API 接口连接** 如果目标小红书账户开放了标准接口,则优先考虑利用官方提供的 RESTful 或 GraphQL 类型 API 来请求所需资源。例如,可以通过 POST 请求传递参数指定需要查询的目标字段(如粉丝数、点赞量等),并接收 JSON 响应体作为原始素材。 ```python import requests url = 'https://api.xiaohongshu.com/endpoint' headers = {'Authorization': 'Bearer YOUR_ACCESS_TOKEN'} payload = { "operationName": "GetUserDetails", "variables": {"userId": "example_user_id"}, "query": """ query GetUserDetails($userId: ID!) { user(id: $userId) { followersCount likesReceivedTotal } } """} response = requests.post(url, json=payload, headers=headers) data = response.json() ``` 2. **解析 HTML 页面结构** 当无法依赖正式渠道时,可借助 Selenium WebDriver 或 Beautiful Soup 等工具模拟浏览器行为加载动态生成的内容片段,并从中抽取特定标签内的文字信息。不过这种方法容易受到反爬机制干扰而失败率较高,建议仅用于实验性质的任务场景下尝试使用。 3. **清洗杂乱无章的信息源** 针对已经收集回来的大规模文本记录集合,往往还需要进一步整理才能满足后续加工需求。比如将混杂在一起的不同类别项目分开存储以便于单独检索;或者剔除掉无关紧要的部分只保留核心要素等等。这里提到过的 Excel 表格分割技巧就是一个很好的例子[^2]。 4. **保存最终成果物** 完成上述各阶段之后就可以着手安排导出环节啦~常见的文件格式包括但不限于 CSV、XLS(X) 和 PDF 文件形式。对于那些希望长期存档留证的朋友来说,后者无疑更加稳妥可靠些哦~ ```bash pandas.DataFrame(data).to_csv('output.csv', index=False) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值