回归分析预测法例题_基于层次回归法的调节作用分析实操

本文介绍了如何使用SPSS进行层次回归分析,以探究调节变量在连续自变量与因变量关系中的作用。通过虚拟变量编码分类调节变量,通过逐步加入交互项,观察回归方程的差异,从而确定调节效应。实操部分详细阐述了从虚拟变量创建到交互项生成,再到多层次回归的每一步骤,最后通过结果分析确认了调节效应的显著性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理论背景

如果因变量Y和自变量X的关系(回归斜率的大小和方向)随第三个变量M的变化而变化,则称M在X和Y之间起调节作用,此时称M为调节变量(见下图)。

1f11abff9b31f1b6789b2ec75ae26eb8.png

当使用SPSS进行调节效应分析的时,分析方法会因自变量和调节变量是连续还是分类变量而有所区别。本篇文章针对的是自变量是连续变量调节变量是分类变量这种情况。

我们先梳理一下在SPSS里使用回归法进行此情况分析的思路:比较两个回归方程Y = i+ aX + bM+c 和Y = i+ aX + bM +cXM +c(多了交互项XM)这两个回归方程是否有显著差异。因为调节变量是分类变量,所以我们需要对调节变量进行虚拟编码,所以最终,交互项XM实际上可能不止一项。这里调节效应的检验,其实质也是层次回归的方法。

1 虚拟变量( Dummy Variables):取值为0或1的人工变量,其作用是实现对分类变量的量化、反映变量质的属性,又称虚设变量、名义变量或哑变量。

虚拟变量设置规则:

1 “0”和“1”选取原则:所有的虚拟变量,取值只有0或1两种;

2 虚拟变量个数:如果变量X有N个水平,在有截距项的模型中,可以用N-1个虚拟变量来表示这个变量X;

虚拟变量举例:

某一年级变量X包含大一、大二、大三、大四四个水平,我们将大一作为比较变量,使用三个虚拟变量编码这个年级变量X。如下表所示,第一列是年级变量X的四个水平,第一行是三个虚拟变量。这样,三个虚拟变量就可以分别编码变量X的每个水平了。

b72c985b1b1c0e6871c5428f62756843.png

步骤解析

1 对调节变量M进行虚拟编码,产生虚拟变量。

2 产生自变量X与虚拟变量的相乘交互项。

3 用自变量X、虚拟变量对因变量Y做回归。

4 用自变量X、虚拟变量、相乘交互项对因变量Y做回归。

5 观察结果判断调节效应是否成立。

实际操作

1.1 打开数据文件,有三个变量:自变量X(连续变量)、拟调节变量M(分类变量,四个水平)、因变量Y(连续变量)。

348cd24c1e842eaa2c603996fad19c79.png

1.2 在spss里将拟调节变量进行虚拟编码。【转换】——【创建虚变量】。

72fcbd8a45e05afd312f77f3bda60e63.png

1.3 第一步在【针对下列变量创建虚变量(C)】中导入变量M。第二步给虚变量命名,如下图所示,这里我们将其命名为Mdum,点击【确定】即可。

f4f499e647165c8ed00d0015ce06b1c6.png

1.4 生成四个虚拟变量Mdum_1、Mdum_2、Mdum_3、Mdum_4,我们只需要三个虚拟变量即可完成对变量M的编码,因此我们可以选择删除其中一个。若将M=4.0作为对照的变量水平,这里可以选择删除Mdum_4。选中这一列,右键【清除】。

6212e72599b36a1ec69bfd0520047e95.png

1.5 这样,虚拟变量便准备好了。可以看到,当M=4.0,三个虚拟变量的值分别为0 0 0,当M=3.0,三个虚拟变量的值分别为0 0 1,当M=1.0,三个虚拟变量的值分别为1 0 0,当M=2.0,三个虚拟变量的值分别为0 1 0。

73e8fe0ab8b2f133cc4cd46f2978e6cc.png

2.1 产生自变量X与虚拟变量的相乘交互项。【转换】——【计算变量】。我们要将三个虚拟变量分别与X相乘,所以将会产生三个新的相乘交互项。

c41366c6145838d9e624d187875229ed.png

2.2 产生第一个相乘交互项。第一步,在【目标变量(T)】中输入,给这新的变量起个变量名。在【数字表达式(E)】中,令X与Mdum_1相乘即可,点击【确定】。

e662a01d4c1995cb27d89d115ec7f50c.png

2.3 同样的步骤,令自变量分别与另外两个虚拟变量相乘,得到另外两个相乘交互项。由此,我们就有了下列这些变量。X、M、Y是我们原本就有的变量,期望得到他们的调节效应;Mdum_1、Mdum_2、Mdum_3是新产生的虚拟变量,用来编码变量M的四个水平;X_Mdum1、X_Mdum2、X_Mdum3是新产生的变量,由自变量X分别与三个虚拟变量相乘而来。

19ad17b14c31cb378b41142a22a742fd.png

3.1 进行层次回归。点击【分析】——【回归】——【线性】,得到下图。我们需要做三层回归。第一层:【因变量(D)】中导入Y、【自变量(I)】中导入X,点击【下一个】,可以进入下一层。

59a342284df5f59aa99ac9fffeb5bbd8.png

3.2 第二层:【因变量(D)】中导入Y、【自变量(I)】中导入X、Mdum_1、Mdum_2、Mdum_3,点击【下一个】,可以进入下一层。

b8063100862df0d34000ccad6b227b1b.png

3.3 第三层:【因变量(D)】中导入Y、【自变量(I)】中导入X、Mdum_1、Mdum_2、Mdum_3、X_Mdum1、X_Mdum2、X_Mdum3。三层回归准备好以后,点击【统计】。

c419b36607d88c15ece2909730109016.png

3.4 勾选【R方变化量】,并点击【继续】。回到主界面后,点击【确定】即可。

651f067d3296354f35c47fbee0fa0dcb.png

3.5 观察输出的结果。在第三层回归中,关注三个相乘交互项的系数显著性,可以发现,交互项X_Mdum1的系数显著,说明M的第一个水平,M=1.0在X与Y中间所起到的作用是不同于M的其他三个取值的。也就是因变量Y和自变量X的关系会随第三个变量M的变化而变化。由此可知,变量M的调节效应显著,主要体现在M=1.0和其他情况的区别。

8a5427a640bf435d96d26059d08dce7a.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值