可以重复利用的线程
直接上代码
from threading importThread, current_threadfrom queue importQueue#重写线程类
classMyThread(Thread):def __init__(self):
super().__init__()
self.daemon= True #守护线程
self.queue = Queue(10)
self.start()#实例化的时候开启线程
def run(self): #子线程只有这一个线程, 从队列里面拿任务
whileTrue:
task, args, kwargs= self.queue.get() #拿任务 也是元组
task(*args, **kwargs) #可能有,可能没有,所有传入不定长参数
self.queue.task_done() #结束任务
def apply_async(self, func, args=(), kwargs={}): #自写任务,不是重写任务, 充当生产者, 给线程提供任务(把任务扔到队列)
self.queue.put((func, args, kwargs))def join_R(self): #主线程等待子线程结束
self.queue.join() #task_done 为0 的时候就阻塞
deffunc():print(1, current_thread())def func2(*args, **kwargs):print(2, current_thread())print(‘func:‘, args, kwargs)
t=MyThread()
t.apply_async(func)
t.apply_async(func2, args=(1,2), kwargs={‘a‘:1, ‘b‘:2})print("任务提交完成")
t.join_R()print("任务完成")
结果:
任务提交完成1
2 func: (1, 2) {‘a‘: 1, ‘b‘: 2}
任务完成 任务完成后,主线程就开始退出, 因此守护线程被杀死
线程池的简单实现
池的概念
主线程: 相当于生产者,只管向线程池提交任务。
并不关心线程池是如何执行任务的。
因此,并不关心是哪一个线程执行的这个任务。
线程池: 相当于消费者,负责接收任务,
并将任务分配到一个空闲的线程中去执行。
代码实现如下:
from threading importThread, current_threadfrom queue importQueueclassT_pool:def __init__(self, n): #准备多少个池
super().__init__()
self.queue=Queue()for i in range(n): #在池里开多少个线程
Thread(target=self.fun, daemon=Thread).start() #守护进程 并启动
def fun(self): #生产者
whileTrue:
task=self.queue.get()
task()
self.queue.task_done()def apply_async(self, task): #消费者
self.queue.put(task)defjoin(self):
self.queue.join()deffunc():print(current_thread())deffunc2():print(current_thread())
p= T_pool(2)
p.apply_async(func)
p.apply_async(func2)
p.join()
结果:
Python自带的池
内置线程池
from multiprocessing.pool import ThreadPool #线程池
from multiprocessing import pool #进程池#内置线程池
def fun(*args, **kwargs):print(args, kwargs)
p= ThreadPool(2) #直接使用内置的
p.apply_async(fun, args=(1,2), kwds={‘a‘:1})
p.close()#要求:在join前必须要close,这样就不允许再提交任务了
p.join()
结果:
(1, 2) {‘a‘: 1}
内置进程池
from multiprocessing import Pool #进程池#内置进程池
def fun(*args, **kwargs):print(args, kwargs)if __name__ == ‘__main__‘: #必须要有一个main测试
p = Pool(2) #pool的实例化必须在main测试之下
p.apply_async(fun, args=(1,2), kwds={‘a‘:1})
p.close()#要求:在join前必须要close,这样就不允许再提交任务了
p.join()
结果:
(1, 2) {‘a‘: 1}
池的其他操作
操作一: close - 关闭提交通道,不允许再提交任务
操作二: terminate - 中止进程池,中止所有任务
操作三: 结果操作
结果操作
from multiprocessing.pool importThreadPoolimporttimedeffunc(n):if n == 1:return 1
elif n == 2:return 2
return func(n-1) + func(n-2)
pool=ThreadPool()
a_result= pool.apply_async(func, args=(35,))print("note1:",time.asctime(time.localtime(time.time())))
result= a_result.get() #会阻塞,知道结果产生了
print("note2:",time.asctime(time.localtime(time.time())))
结果:
note1: Mon Sep 17 00:07:31 2018note2: Mon Sep17 00:07:34 2018
使用池来实现并发服务器
使用线程池来实现并发服务器
importsocketfrom multiprocessing.pool import ThreadPool #线程池
from multiprocessing importPool, cpu_count‘‘‘使用线程池来实现
并发服务器‘‘‘
print(cpu_count())
server=socket.socket()
server.bind((‘0.0.0.0‘, 8080))
server.listen(1000)defwork_thread(conn):whileTrue:
data= conn.recv(1000)ifdata:print(data)
conn.send(data)else:
conn.close()break
if __name__ == ‘__main__‘:
t_pool= ThreadPool(5) #使用线程池, 通常分配2倍的cpu个数
whileTrue:
conn,addr=server.accept()
t_pool.apply_async(work_thread, args=(conn,)) #接收的是个任务, conn做为参数
使用进程池来实现并发服务器
importsocketfrom multiprocessing.pool import ThreadPool #线程池
from multiprocessing importPool, cpu_count‘‘‘使用进程池来实现
并发服务器‘‘‘
print(cpu_count())
server=socket.socket()
server.bind((‘0.0.0.0‘, 9000))
server.listen(1000)defwork_process(server):
t_pool= ThreadPool(cpu_count()*2) #使用线程池, 通常分配2倍的cpu个数
whileTrue:
conn,addr=server.accept()
t_pool.apply_async(work_thread, args=(conn,)) #接收的是个任务, conn做为参数
defwork_thread(conn):whileTrue:
data= conn.recv(1000)ifdata:print(data)
conn.send(data)else:
conn.close()breakn= cpu_count() #获取当前计算机的CPU核心数量
p =Pool(n)for i in range(n): #充分利用CPU, 为每个CPU分配一个进程
p.apply_async(work_process, args=(server,))
p.close()
p.join()
客户端:
importsocket
click=socket.socket()
click.connect((‘127.0.0.1‘, 8888))whileTrue:
data= input("请输入你要发送的数据:")
click.send(data.encode())print("接收到的消息: {}".format(click.recv(1024).decode()))
总结完毕。
博客链接:https://www.cnblogs.com/lixy-88428977
声明:本文为博主学习感悟总结,水平有限,如果不当,欢迎指正。如果您认为还不错,欢迎转载。转载与引用请注明作者及出处。