求立方根_七上 数学,立方根,无理数

这篇内容介绍了立方根的定义、性质以及求立方根的运算——开立方,强调了每个数都有唯一一个立方根。同时阐述了无理数的定义,包括无限不循环小数和含有π的数,并列举了无理数的三种常见形式。重点讲解了平方根和立方根的性质,并指出判断无理数时需关注其化简结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

立方根

(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3a,那么x叫做a的立方根.记作:

(2)正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.

(3)求一个数a的立方根的运算叫开立方,其中a叫做被开方数.

注意:符号a3中的根指数“3”不能省略;对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.

【规律方法】平方根和立方根的性质

1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.

2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.

e1072fdeb05d5557af3ce507d21ec089.png

无理数

(1)、定义:无限不循环小数叫做无理数.

说明:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数. 如圆周率、2的平方根等.

(2)、无理数与有理数的区别:

 ①把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,

比如4=4.0,13=0.33333…而无理数只能写成无限不循环小数,比如2=1.414213562.

 ②所有的有理数都可以写成两个整数之比;而无理数不能.

(3)学习要求:会判断无理数,了解它的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,如分数π2是无理数,因为π是无理数.

无理数常见的三种类型

(1)开不尽的方根,如

等.

(2)特定结构的无限不循环小数,

如0.303 003 000 300 003…(两个3之间依次多一个0).

(3)含有π的绝大部分数,如2π.

注意:判断一个数是否为无理数,不能只看形式,要看化简结果.如

是有理数,而不是无理数.

bd2e9651012eff0bdd830504df8a1f16.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值