图像风格迁移cvpr2020_CVPR2020 | 对抗伪装:如何让AI怀疑人生!

本文介绍了CVPR2020的论文《Adversarial Camouflage: Hiding Physical-World Attacks with Natural Styles》,研究者提出了一种结合风格迁移和对抗攻击的框架AdvCam,能够将对抗样本伪装成自然风格,使其在现实世界中更难被察觉。这种方法可以用于伪装物理世界的攻击,如改变交通标志,甚至保护个人隐私,防止深度学习监控设备的追踪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原标题:CVPR2020 | 对抗伪装:如何让AI怀疑人生!

本文介绍的是CVPR2020论文《Adversarial Camouflage: Hiding Physical-World Attacks with Natural Styles》,作者是来自澳大利亚Swinbourne大学的段然杰。

作者 | 段然杰

编辑 | 丛 末

论文地址:https://arxiv.org/abs/2003.08757

开源地址:https://github.com/RjDuan/AdvCam-Hide-Adv-with-Natural-Styles

想象一下,有一天你坐在自动驾驶汽车行驶在街道上,右前方有个stop的牌子,除了有点旧,看起来并没有什么异样,你没有留心太多,继续专注手头的工作,可是车并没有停下来…

如果你是广大炼丹师的一员,你一定听说过对抗样本,对抗样本作为神经网络出其不意的bug ,近年引起很多关注,在你的印象中,ta 可能是这样子的:

Figure 1. FGSM [1]

但是, 由于现实环境的多种因素( 例如光照、拍摄距离等) ,这种小量的干扰不易被相机等设备捕捉到,从而只能在数字世界里发挥作用。当然,也有一些工作将对抗样本带到现实世界中,并产生威胁,例如Brown 等人在2017 年提出的adversarial patch [2]:

Figure 2. Adversarial patch [2]

以及应用于交通标志的“对抗贴纸“ [3] :

Figure 4. RP2 [3]

但是,这些工作将对抗样本带到现实世界中同时,过大的干扰形成的诡异图案也变得容易被人察觉。所以, 有没办法能让对抗样本在现实世界中也做到不可察觉呢?

本文介绍一篇CVPR 2020的工作:对抗伪装(adversarial camouflage: hiding physical-world attacks with naturalstyles)。在该项工作中,来自澳大利亚Swinbourne大学、墨尔本大学、以及上海交通大学的研究者们通过一个结合了风格迁移和对抗攻击的框架(AdvCam)可以将对抗样本的风格进行个性化伪装。攻击者可以随意选择自己喜欢的风格和攻击区域进行攻击并伪装。从此,对抗攻击变得更有意思了呢…

例如,下面几张图片,你看出来哪里变了么?

手枪or 厕纸?

汽车or交通灯?

刀鞘or 钱包?

小猎狗or 熊皮?

Figure5.

不同于之前的工作,通过限定L-p norm 要求对抗样本尽可能与原图差别不大,本文作者通过融合风格迁移方法定义了一种新颖的范式来实现对抗样本的不可察觉性:

作为攻击者,在确定了攻击目标的周边环境后,攻击者可以通过自定义风格将攻击后的物体进行伪装。例如,对交通指示牌的攻击可以随意伪装成:泥点、褪色或者雪渍等自然常见的样子:

Figure6

在真实物理世界里,这种伪装方式可以让对抗攻击以各种形态伪装在各种角落里。

比如,随意悬挂的一个交通指示牌,其实是一个“理发店”(what?? ):

作者还展示了这种伪装的另一个用途:保护个人隐私。例如在各种监控设备的场景下,用户个人可以用定制具有对抗效果的T 恤用于避免被深度学习加持监控设备追踪:

Figure7.

Figure8.

Reference :

[1] ChristianSzegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, IanGoodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR,2013.

[2] TomB Brown, Dandelion Mane, Aurko Roy, Mart ´ ´ın Abadi, and Justin Gilmer.Adversarial patch. In NIPS Workshop, 2017

[3] IvanEvtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, AtulPrakash, Amir Rahmati, and Dawn Song. Robust physical-world attacks on deeplearning models. In CVPR, 2018.

责任编辑:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值