【问题】
平面内有n个矩形, 第i个矩形的左下角坐标为(x1[i], y1[i]), 右上角坐标为(x2[i], y2[i])。
如果两个或者多个矩形有公共区域则认为它们是相互重叠的(不考虑边界和角落)。
请你计算出平面内重叠矩形数量最多的地方,有多少个矩形相互重叠。
输入描述:
输入包括五行。
第一行包括一个整数n(2 <= n <= 50), 表示矩形的个数。
第二行包括n个整数x1[i](-10^9 <= x1[i] <= 10^9),表示左下角的横坐标。
第三行包括n个整数y1[i](-10^9 <= y1[i] <= 10^9),表示左下角的纵坐标。
第四行包括n个整数x2[i](-10^9 <= x2[i] <= 10^9),表示右上角的横坐标。
第五行包括n个整数y2[i](-10^9 <= y2[i] <= 10^9),表示右上角的纵坐标。
输出描述:
输出一个正整数, 表示最多的地方有多少个矩形相互重叠,如果矩形都不互相重叠,输出1。
示例1
输入
2
0 90
0 90
100 200
100 200
输出
2
【解决】
① 直接暴力求解,针对每个点在所有矩阵中的次数,返回最大值。O(n^3)。
import java.util.*;
public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] x1 = new int[n];
int[] y1 = new int[n];
int[] x2 = new int[n];
int[] y2 = new int[n];
List xx = new ArrayList<>();
List yy = new ArrayList<>();
for (int i = 0;i < n;i ++){
x1[i] = sc.nextInt();
xx.add(x1[i]);
}
for (int i = 0;i < n;i ++){
y1[i] = sc.nextInt();
yy.add(y1[i]);
}
for (int i = 0;i < n;i ++){
x2[i] = sc.nextInt();
xx.add(x2[i]);
}
for (int i = 0;i < n;i ++){
y2[i] = sc.nextInt();
yy.add(y2[i]);
}
int res = 0;
for (Integer x : xx){
for (Integer y : yy){
int count = 0;
for (int i = 0;i < n;i ++){
if (x > x1[i] && y > y1[i] && x <= x2[i] && y <= y2[i]){
count ++;
}
}
res = Math.max(res,count);
}
}
System.out.println(res);
}
}