pycharm连接服务器远程调试出现No module named‘_pydevd_bundle_ext‘ 问题:使用pycharm远程调试一致出现No module named’_pydevd_bundle_ext’这个错误坑坑…,这个错误浪费了我3个小时。我的代码如下:if __name__ == '__main__': print('DD') print()错误如下Traceback (most recent call last): File "/home/www/.pycharm_helpers/pydev/_pydevd_bundle/pydevd_trace_dispatc
conda创建环境时出现SSLError certificate错误 `An HTTP error occurred when trying to retrieve this URL.HTTP errors are often intermittent, and a simple retry will get you on your way.SSLError(MaxRetryError('HTTPSConnectionPool(host=\'mirrors.tuna.tsinghua.edu.cn\', port=443): Max retries exceeded wi
torch遇到的错误 1 CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.For debugging consider passing CUDA_LAUNCH_BLOCKING=1.在代码中加入os.environ['CUDA_LAUNCH_BLOCKING'] = '1'可以将错误的具体位置显示出来。以上的问题大多是网络中的labe
tf.train.Coordinator tensorflow中协调器 tf.train.Coordinator 和入队线程启动器 tf.train.start_queue_runnersensorFlow的Session对象是支持多线程的,可以在同一个会话(Session)中创建多个线程,并行执行。在Session中的所有线程都必须能被同步终止,异常必须能被正确捕获并报告,会话终止的时候, 队列必须能被正确地关闭。TensorFlow提供了两个类来实现对Session中多线程的管理:tf.Coordinator和 tf.QueueRunner
解决pip按照tensorflow速度慢的问题 在虚拟环境中使用该命令,下载按照速度特别的快。python -m pip install tensorflow==2.2.0 -i https://pypi.douban.com/simple
持续学习-Continual learning 当前主流的针对神经网络模型的持续学习方法可以分为一下几类:1. Regularization: 在网络参数更新的时候增加限制,使得网络在学习新任务的时候不影响之前的知识。这类方法中,最典型的算法就是EWC。EWC https://github.com/GMvandeVen/continual-learning2. Ensembling: 当模型学习新任务的时候,增加新的模型(可以是显示或者隐式的方法),使得多个任务实质还是可以对应多个模型,最后把多个模型的预测进行整合。增加子模型的方式固然好,但是没多
python的进程和线程详细讲解和使用 python并行计算(上):multiprocessing、multiprocess模块 - 爱coding的文章 - 知乎https://zhuanlan.zhihu.com/p/46798399python并行计算(下):multiprocessing模块实例 - 爱coding的文章 - 知乎https://zhuanlan.zhihu.com/p/46718327...
python显示3D网格图 from mpl_toolkits.mplot3d import Axes3Dimport matplotlib.pyplot as pltimport numpy as npdef himmelbau(x): return (x[0]**2 + x[1] - 1)**2 + (x[0] + x[1] **2 -7)**2x = np.arange(-6,6,0.1)y = np.arange(-6,6,0.1)print('x,y range:',x.shape,y.shape)
python的使用技巧 1 流式读取数G大文件使用read方法,指定每次指定读取固定大小的内容。下面的代码每次只读取8K的数据方法一def read_from_file(filename,block_size= 1024*8): with open(filename,'r') as fp: while True: chunk = fp.read(block_size) if not chunk: break yield chunk方法二借助辅助函数from functools impo
tensorflow2.2.0将h5模型转为tflite import tensorflow as tffrom tensorflow.python.framework import opsfrom tensorflow.python.ops import math_opsfrom tensorflow.python.keras import backend as K#自定义损失def ReprojectionLoss(y_true, y_pred): y_pred = ops.convert_to_tensor_v2(y_pred)
Rethinking Classification and Localization for Object Detection 摘要在基于R-CNN的检测器中,两个头结构(即完全连接的头和卷积头)已广泛用于分类和定位任务。但是对于这个两个任务两个头结果是如何工作的缺乏了解。为了理解该问题,我们进行了透彻的分析,发现一个有趣的事实,即两个头部结构对两个任务的偏好相反。具体而言全连接头(fc-head)更适合分类任务,而卷积头(conv-head)更适合定位任务。此外,我们检查了两个头部的输出特征图,发现fc-head比conv-head具有更高的空间敏感性,因此fc-head具有更强的区分能力来分别完整的对象和对象的一部分,但是对于
图像分类损失的改进---CVPR2018: 更为鲁棒的分类器 卷积原型学习CPL CVPR2018: 更为鲁棒的分类器 卷积原型学习CPL[https://zhuanlan.zhihu.com/p/49458516](https://zhuanlan.zhihu.com/p/49458516)论文地址:代码实现:
RBF-SoftMax:让模型学到具有表达能力的类别表示---原理和实现 摘要交叉熵是深度学习中非常常用的一种损失,通过交叉熵学到的特征表示会有比较大的类内的多样性。因为传统的softmax损失优化的是类内和类间的差异的最大化,也就是类内和类间的距离(logits)的差别的最大化,没有办法得到表示类别的向量表示来对类内距离进行正则化。之前的方法都是想办法增加类内的内聚性,而忽视了不同的类别之间的关系。本文提出了Radial Basis Function(RBF 径向基函数)距离来代替原来的softmax中的内积,这样可以自适应的给类内和类间距离施加正则化,可以得到更好的表示类别
类激活热力图-GradCAM 算法原理这里以猫狗分类为例。计算最后一层的Softmax输出中猫类概率 yc\ y^c yc对最后一层特征图所有像素 Aij\ A_{ij} Aij的偏导数,即其中,y是Softmax输出的概率向量,c是猫那一类的序号,A是最后一层卷积层输出的特征图,k是特征图的通道维度的序号,i和j分别是宽高维度的序号。然后把 yc\ y_c yc对特征图每个像素的偏导数求出来之后,取一次矿都维度上全局平均。这一步得到的 akc\
径向基(Radial Basis Function:RBF)神经网络 前言径向基函数是一个取值仅仅依赖于离远点的实值函数,也就是 ϕ(x)=ϕ(∣∣x∣∣)\ \phi(x)=\phi(||x||) ϕ(x)=ϕ(∣∣x∣∣),或者还可以是任意一点c的距离,c点称为中心点,也就是 ϕ(x−c)=ϕ(∣∣x−c∣∣)\ \phi(x-c)=\phi(||x-c||) ϕ(x−c)=ϕ(∣∣x−c∣∣)。任意一点满足 ϕ(x)=ϕ(∣∣x∣∣)\ \phi(x)=\phi(||x||) ϕ(x)=ϕ(∣∣x∣∣)特性的
YoloV1-V3 1 YoloV11.1 论文思想1.2 网络结构1.3 损失函数通过开根号设计可以使得,小的bbox loss有较大权重,大的bbox有较小的权重。1.4 缺点(1)在一群小的目标聚集在一起的时候,网络的识别效果就非常的差。(2)当目标出现新的尺寸或者配置的时候,网络的预测的效果非常差。(3)主要的错误原因就是定位的不准确, 因为是直接预测目标的坐标信息,而不是像fater-rcnn和ssd预测微参数。2 YoloV22.1 性能根据上图可以看出yoloV2最高的检测精度可
NMS(No-Maximum Suppression,NMS) 引言非极大值抑制(Non-Maximum Suppression,NMS),就是抑制不是极大值的元素,可以理解为局部最大搜索。其目的就是去掉冗余的检测框,相似的框只保留一个,这样可以消除多余的候选框,找到最佳的物体检测位置。算法步骤算法流程:其中:B为初始化的候选框,S为每个框的相应得分, NtN_tNt为NMS的阈值。初始一个集合D找到S中最高的得分m将框 bmb_mbm加入几个D中,并且集合B中去除bmb_mbm计算集合B中每个框与bmb_mbm的IOU值如果IOU值大于
nvidia-docker的配置及使用 docker的安装参考链接添加链接描述nvidia-docker的安装参考链接nvidia-docker的使用nvidia-docker run -it --shm-size=10g --runtime=nvidia -e NVIDIA_VISIBLE_DEVICE=0 nvcr.io/nvidia/tensorflow:20.03-tf2-py3 #对应tensorflow 2.1.0版本nvidia-docker run -it --shm-size=10g --runtime=nvi