java高并发临时表_数据量很大,分页查询很慢,有什么优化方案?

小Hub领读:

当页数比较大的时候,查询效率直线下降,有什么办法可以优化吗?看完这篇文章!作者:悠悠i

来源:cnblogs.com/youyoui/p/7851007.html准备工作

一般分页查询

使用子查询优化

使用 id 限定优化

使用临时表优化

关于数据表的 id 说明

*

当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询。对于数据库分页查询,也有很多种方法和优化的点。下面简单说一下我知道的一些方法。

准备工作

为了对下面列举的一些优化进行测试,下面针对已有的一张表进行说明。表名:order_history

描述:某个业务的订单历史表

主要字段:unsigned int id,tinyint(4) int type

字段情况:该表一共 37 个字段,不包含 text 等大型数据,最大为 varchar(500),id 字段为索引,且为递增。

数据量:5709294

MySQL 版本:5.7.16 线下找一张百万级的测试表可不容易,如果需要自己测试的话,可以写 shell 脚本什么的插入数据进行测试。以下的 sql 所有语句执行的环境没有发生改变,下面是基本测试结果:select count(*) from orders_history;

返回结果:5709294

三次查询时间分别为:8903 ms

8323 ms

8401 ms

一般分页查询

一般的分页查询使用简单的 limit 子句就可以实现。limit 子句声明如下:SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset

LIMIT 子句可以被用于指定 SELECT 语句返回的记录数。需注意以下几点:第一个参数指定第一个返回记录行的偏移量,注意从0开始

第二个参数指定返回记录行的最大数目

如果只给定一个参数:它表示返回最大的记录行数目

第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行

初始记录行的偏移量是 0(而不是 1)

下面是一个应用实例:select * from orders_history where type=8 limit 1000,10;

该条语句将会从表 orders_history 中查询offset: 1000开始之后的 10 条数据,也就是第 1001 条到第 1010 条数据(1001 <= id <= 1010)。

数据表中的记录默认使用主键(一般为 id)排序,上面的结果相当于:select * from orders_history where type=8 order by id limit 10000,10;

三次查询时间分别为:3040 ms

3063 ms

3018 ms

针对这种查询方式,下面测试查询记录量对时间的影响:select * from orders_history where type=8 limit 10000,1;

select * from orders_history where type=8 limit 10000,10;

select * from orders_history where type=8 limit 10000,100;

select * from orders_history where type=8 limit 10000,1000;

select * from orders_history where type=8 limit 10000,10000;

三次查询时间如下:查询 1 条记录:3072ms 3092ms 3002ms

查询 10 条记录:3081ms 3077ms 3032ms

查询 100 条记录:3118ms 3200ms 3128ms

查询 1000 条记录:3412ms 3468ms 3394ms

查询 10000 条记录:3749ms 3802ms 3696ms

另外我还做了十来次查询,从查询时间来看,基本可以确定,在查询记录量低于 100 时,查询时间基本没有差距,随着查询记录量越来越大,所花费的时间也会越来越多。

针对查询偏移量的测试:select * from orders_history where type=8 limit 100,100;

select * from orders_history where type=8 limit 1000,100;

select * from orders_history where type=8 limit 10000,100;

select * from orders_history where type=8 limit 100000,100;

select * from orders_history where type=8 limit 1000000,100;

三次查询时间如下:查询 100 偏移:25ms 24ms 24ms

查询 1000 偏移:78ms 76ms 77ms

查询 10000 偏移:3092ms 3212ms 3128ms

查询 100000 偏移:3878ms 3812ms 3798ms

查询 1000000 偏移:14608ms 14062ms 14700ms

随着查询偏移的增大,尤其查询偏移大于 10 万以后,查询时间急剧增加。

这种分页查询方式会从数据库第一条记录开始扫描,所以越往后,查询速度越慢,而且查询的数据越多,也会拖慢总查询速度。

使用子查询优化

这种方式先定位偏移位置的 id,然后往后查询,这种方式适用于 id 递增的情况。select * from orders_history where type=8 limit 100000,1;

select id from orders_history where type=8 limit 100000,1;

select * from orders_history where type=8 and

id>=(select id from orders_history where type=8 limit 100000,1)

limit 100;

select * from orders_history where type=8 limit 100000,100;

4 条语句的查询时间如下:第 1 条语句:3674ms

第 2 条语句:1315ms

第 3 条语句:1327ms

第 4 条语句:3710ms

针对上面的查询需要注意:比较第 1 条语句和第 2 条语句:使用 select id 代替 select * 速度增加了 3 倍

比较第 2 条语句和第 3 条语句:速度相差几十毫秒

比较第 3 条语句和第 4 条语句:得益于 select id 速度增加,第 3 条语句查询速度增加了 3 倍

这种方式相较于原始一般的查询方法,将会增快数倍。

使用 id 限定优化

这种方式假设数据表的 id 是连续递增的,则我们根据查询的页数和查询的记录数可以算出查询的 id 的范围,可以使用 id between and 来查询:select * from orders_history where type=2

and id between 1000000 and 1000100 limit 100;

查询时间:15ms 12ms 9ms

这种查询方式能够极大地优化查询速度,基本能够在几十毫秒之内完成。限制是只能使用于明确知道 id 的情况,不过一般建立表的时候,都会添加基本的 id 字段,这为分页查询带来很多便利。

还可以有另外一种写法:select * from orders_history where id >= 1000001 limit 100;

当然还可以使用 in 的方式来进行查询,这种方式经常用在多表关联的时候进行查询,使用其他表查询的 id 集合,来进行查询:select * from orders_history where id in

(select order_id from trade_2 where goods = 'pen')

limit 100;

这种 in 查询的方式要注意:某些 mysql 版本不支持在 in 子句中使用 limit。

使用临时表优化

这种方式已经不属于查询优化,这儿附带提一下。

对于使用 id 限定优化中的问题,需要 id 是连续递增的,但是在一些场景下,比如使用历史表的时候,或者出现过数据缺失问题时,可以考虑使用临时存储的表来记录分页的 id,使用分页的 id 来进行 in 查询。这样能够极大的提高传统的分页查询速度,尤其是数据量上千万的时候。

关于数据表的 id 说明

一般情况下,在数据库中建立表的时候,强制为每一张表添加 id 递增字段,这样方便查询。

如果像是订单库等数据量非常庞大,一般会进行分库分表。这个时候不建议使用数据库的 id 作为唯一标识,而应该使用分布式的高并发唯一 id 生成器来生成,并在数据表中使用另外的字段来存储这个唯一标识。

使用先使用范围查询定位 id (或者索引),然后再使用索引进行定位数据,能够提高好几倍查询速度。即先 select id,然后再 select *;

本人才疏学浅,难免犯错,若发现文中有错误遗漏,望不吝赐教。

推荐阅读:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值