2.2.2
若A∈Atom(L p),则n=0,m=1,m = n+1成立。
若B、C∈Form(L p),B中出现∧,∨,→, 的次数为n1次,出现原子公式的次数为m1次,m1= n1+1,C中出现∧,∨,→, 的次数为n2次,出现原子公式的次数为m2次,m2 = n2+2,A=B*C,则m=m1+m2,n=n1+n2+1,故m = n+1. 2.2.3 若A∈Atom(L p),则deg(A) = 0,此时deg(A)=连接符在A中出现的次数0; 若A = ¬B,B∈Atom(L p),则deg(A) = 1,此时deg(A) = 连接符在A中出现的次数1。 若A= B*C,则deg(A) = max(deg(A),deg(B))+1,若B、C∈Atom(L p),则deg(A) = 1,此时deg(A) = 连接符在A中出现的次数1。 若B、C !∈Atom(L p),即B、C=D1*D2*…*Di, Di∈Atom(L p),则deg(A)=deg(B)+1或deg(C)+1,即
A由上面三条生成,即A∈Form(L p),得deg(A) ≤ 连接符在A中出现的次数。
2.4.5 若i = 1,由(Ai→Bi) v=1,得到得A1=0或者B1=1。由条件(2)(3)得到A1=1,B1=1,结论得证。 由(Ai→Bi) v=1,得Ai=0或者Bi=1;---(1)
由(A1∨……∨An) v=1得,至少有一个i,1≤i≤n,使得Ai v =1。---(2) 由(Bi∧Bi) v=0得,至少有一个i,1≤i≤n,使得Bi v=0。---(3) 若Bi v=0,1≤i≤n,则 Ai v=0,1≤i≤n,与(2)矛盾;
若1≤i,j≤n,i!=j,使得Bi v=1,Bjv=1,则(Bi∧Bi) v=1,与(3)矛盾; 则存在唯一的i,使得Biv=1。
若Aj=1,Bi=1,1≤i,j≤n ,i!=j,则(Aj→Bj) v=0,与(1)矛盾,则存在唯一的i,使得Ai=Bi=1。 结论得证。
2.5.2 (ii)
证明:
先证(A1…An|=A)|= (φ|=( A1→(…(An→A))), 设(A1,…An|=A)v=1,则A1 v =1,A2 v =1,…An v =1,A v =1;带入右边式子,(An→A)v=1, (An-1→(An→A)) v =1,( A1→(…(An→A)) v=1,即(φ|=( A1→(…(An→A)))成立。
再证(ф|=(A1→(…(An→A)))|=(A1,…An|=A)。假设(ф|=(A1→(…(An→A))) v=1,而(A1…An|=A) v=0,即A1 v =1,A2 v =1,…An v =1,A v =0。则(An→A)v=0,(An-1→(An→A)) v =0,( A1→(…(An→A)) v=0,产生矛盾,假设不成立。 证明成立。
引理2.5.3 证明:
(ⅰ)先证¬A|=¬A’
设存在一组赋值使得(¬A)v =1,(¬A’)V=0,即得(A)v=0,(A’)v=1,与