单次试验非线性最小二乘TOA定位Matlab代码解析

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本MATLAB代码集专注于非线性最小二乘(NLS)方法在单次测量中应用于到达时间(TOA)定位问题的实践。通过这一系列的代码,用户可以理解非线性最小二乘法如何应用于无线通信和导航系统中,以简化定位流程并提高理解度。代码文件包括主运行逻辑、Hessian矩阵计算、梯度计算和雅可比矩阵计算等,为学习和实践NLS方法提供了实用的工具。

1. 非线性最小二乘法(NLS)基础理论

在现代信号处理和数据分析中,非线性最小二乘法(NLS)是一种重要的数学工具,用于估计模型参数,以最小化误差的平方和。它是对线性最小二乘法的扩展,广泛应用于物理、工程、经济等多个领域。

1.1 NLS的数学原理

非线性最小二乘法的核心思想是找到一组参数,使得观测数据与模型预测值之间的差异(即残差)的平方和达到最小。数学表达上,目标函数通常写作: [ J(\theta) = \sum_{i=1}^{n}(y_i - f(x_i, \theta))^2 ] 其中,( y_i ) 是第 ( i ) 个观测值,( f(x_i, \theta) ) 是在参数 ( \theta ) 下模型的预测值,而 ( x_i ) 是相应的输入变量。

1.2 NLS在优化中的应用

在优化过程中,NLS算法通过迭代方法(如高斯-牛顿法、Levenberg-Marquardt算法等)来更新参数,逐步逼近最小化目标函数值。每一步迭代中,算法依据目标函数对参数的梯度(即雅可比矩阵)和二阶导数信息(即Hessian矩阵),调整参数以减少误差。

理解NLS的基础理论是掌握其在多种实际应用中进行参数估计和模型优化的关键,例如在时间到达定位(TOA)技术中实现精确的定位计算。在后续章节中,我们将深入探讨NLS如何被应用于具体的定位技术中,并通过MATLAB编程实践来加深理解。

2. 到达时间(TOA)定位技术

2.1 TOA定位技术原理

2.1.1 TOA定位技术概述

到达时间(Time of Arrival, TOA)定位技术是一种基于时间测量的无线定位方法,广泛应用于无线传感网络、室内定位以及军事领域。TOA技术依据无线信号从发射点传播到接收点所消耗的时间,结合已知的传播速度(在无线通信中通常指光速),来计算出信号发射点与接收点之间的距离,从而实现定位。

TOA定位技术的关键在于准确测量信号的到达时间。这要求接收设备具有高精度的时钟同步,并且系统能有效处理多径效应和信号同步误差等问题。TOA技术的一个重要优势是定位精度相对较高,尤其适用于视距(Line of Sight, LOS)条件良好的场景。

2.1.2 TOA测量模型建立

为了建立一个TOA测量模型,我们首先需要了解无线信号传播的基本原理。无线信号从发射器传播到接收器的过程中,通常会经过一个固定速度的传播过程。在无干扰的情况下,无线信号传播距离 (d) 可以通过以下公式计算:

[ d = c \cdot \Delta t ]

其中 ( c ) 是无线信号在空气中的传播速度(通常为光速),而 (\Delta t) 则是信号从发射到接收的时间差。

在实际应用中,由于信号传播的环境可能复杂,受建筑物、植被等因素的影响,可能会产生多径效应,导致信号到达接收器的时间产生误差。因此,模型中还需要考虑多径效应造成的误差因素,可以通过各种信号处理技术来减少这种误差的影响。

接下来,如果我们有多个已知位置的接收器,通过计算每个接收器收到信号的时间差,我们可以得到多个球面方程,这些球面方程的交点便是信号发射点的位置。通过求解这个多维空间中的交点问题,我们最终可以得到发射点的精确坐标。

2.2 TOA定位技术的优势与局限

2.2.1 技术优势分析

TOA技术的主要优势在于:

  1. 高定位精度 :在视距情况下,TOA技术能够提供较为精确的定位结果,尤其是在使用高精度时间测量设备和良好的信号处理算法时。

  2. 时间同步机制 :TOA定位技术可以借助现代的同步技术,实现对时间差的精确测量,从而减小定位误差。

  3. 广泛的应用范围 :由于TOA技术不依赖于特定的信号强度,其应用范围相对广泛,包括各种无线通信和传感器网络。

2.2.2 应用中的限制因素

然而,TOA技术也存在一些限制:

  1. 同步误差 :时钟同步误差是影响TOA定位精度的主要因素之一。如果发射器和接收器之间的时钟频率不完全同步,将直接影响定位结果的准确性。

  2. 多径效应 :在复杂的城市或室内环境中,无线信号可能通过不同的路径到达接收器,导致计算出的距离值不准确。

  3. 非视距传播 :在非视距(Non-Line of Sight, NLOS)条件下,信号可能会经历反射、折射、散射等现象,从而产生较大的测量误差。

在实际应用中,这些问题需要通过算法优化、信号处理技术改进以及使用额外的传感器数据来减小其影响。同时,通过结合其他定位技术(如角度定位(Angle of Arrival, AOA)或指纹定位)可以进一步提高定位的准确性和鲁棒性。

为了更好地理解和评估TOA定位技术的应用效果,接下来我们将探讨在实际操作中如何通过优化算法来提高TOA定位的精度和可靠性。

3. 单次测量定位优化策略

3.1 单次测量定位的基本概念

3.1.1 定位优化的目标与方法

在无线定位技术中,单次测量定位(Single Measurement Location, SML)是指通过一次测量数据来确定目标位置的方法。相比于多次测量定位,单次测量定位在实施时更为高效,降低了复杂度和计算量。然而,这种高效性是以牺牲一定的定位精度为代价的。

优化的目标通常是为了提高定位的准确度和可靠性,在确保实时性的同时,尽可能减少所需的计算资源和能耗。为了达到这些目标,研究者们提出了多种优化方法。其中包括:

  • 算法优化 :通过数学建模与算法改进,例如采用更优的优化算法来提高计算效率和定位精度。
  • 数据融合 :将单次测量的数据与先前的历史数据或不同类型的传感器数据进行融合,以提高定位结果的稳定性。
  • 硬件改进 :通过改进传感器的设计与布局,提高单次测量的质量和可靠性。

3.1.2 单次测量与多次测量的对比

单次测量定位的显著优势在于处理速度快、成本低。但另一方面,单次测量往往受限于信号的质量和环境噪声的影响,导致定位结果可能不够准确。多次测量定位则通过累积多次测量数据,用以提高定位的准确性和可靠性。

在实际应用中,单次测量定位多适用于需要快速响应的场景,如紧急救援、灾难响应、移动设备的即时定位等。而多次测量定位则适用于对定位精度要求较高的场合,如室内导航、高精度地理信息系统等。

3.2 单次测量定位的优化算法

3.2.1 算法原理与流程

优化单次测量定位通常需要借助先进的算法来提高定位精度。一个常见的方法是应用加权最小二乘法(Weighted Least Squares, WLS),通过为每个测量赋予不同权重,来降低噪声影响较大的测量对最终结果的影响。

算法流程如下:

  1. 初始化 :设置初始权重向量。
  2. 估计位置 :利用当前权重计算目标位置估计。
  3. 计算残差 :根据位置估计计算残差向量。
  4. 更新权重 :根据残差调整权重向量,强化准确度高的测量值,削弱误差大的测量值。
  5. 迭代 :重复步骤2-4直至收敛。

3.2.2 算法的性能评估与比较

评估单次测量定位优化算法的性能主要参考以下几个指标:

  • 定位误差 :测量定位结果与真实位置之间的差异。
  • 计算时间 :算法从开始执行到输出定位结果所需的时间。
  • 稳定性 :算法在不同环境下的表现一致性。
  • 资源消耗 :算法执行所需的计算资源和能源消耗。

比较不同优化算法时,需考虑上述指标。例如,加权最小二乘法在权重更新机制上比基本的最小二乘法更复杂,但通常能提供更高的定位准确度和更低的误差。通过实验仿真和实际场景测试可以对算法性能进行全面评估。

为了更深入理解这一部分的内容,我们可以通过一个简单的代码示例来展示如何用加权最小二乘法进行单次测量定位优化:

% 假设有三个基站的位置坐标和一个目标设备的测量距离
base_stations = [0, 0; 10, 0; 5, 8]; % 基站坐标
measured_distances = [5; 9; 6]; % 测量距离

% 初始化权重和目标设备位置估计
weights = ones(length(measured_distances), 1); % 初始权重设置为1
initial_estimate = mean(base_stations, 1); % 初始位置估计为基站坐标的平均值

% 迭代次数
num_iterations = 5;

for iteration = 1:num_iterations
    % 构建设计矩阵A
    A = [-2*(base_stations(1,:) - initial_estimate); ...
         -2*(base_stations(2,:) - initial_estimate); ...
         -2*(base_stations(3,:) - initial_estimate)];
    % 计算残差
    residuals = sqrt(sum((A' * weights) .* A' * weights)) - measured_distances;
    % 计算位置更新
    delta = A \ residuals;
    % 更新位置估计
    initial_estimate = initial_estimate + delta;
    % 更新权重
    weights = 1 ./ (residuals .^ 2);
end

% 输出优化后的位置估计
fprintf('优化后的位置估计为:(%.3f, %.3f)\n', initial_estimate);

上述MATLAB代码首先定义了基站的位置和测量距离,然后通过迭代更新位置估计和权重,最终输出优化后的目标设备位置估计。代码中每一步的操作都有详细的注释,解释了每一步的计算逻辑。通过这个示例,我们可以清楚地看到加权最小二乘法在单次测量定位优化中的应用过程。

在实际应用中,算法的性能评估和比较通常需要在特定的硬件和软件环境下进行,以确保评估结果的真实性和准确性。

4. Hessian矩阵与梯度计算

4.1 Hessian矩阵的理论与计算

4.1.1 Hessian矩阵的定义与性质

Hessian矩阵是一个在多变量函数中非常重要的概念,尤其是在最小化或最大化目标函数的优化问题中。它由目标函数对所有变量的二阶偏导数组成。假设我们有一个二元函数 f(x,y),其Hessian矩阵 H 可以表示为:

H = [ f_xx, f_xy ]
    [ f_yx, f_yy ]

其中 f_xx 表示对 x 的二阶偏导数,f_yy 表示对 y 的二阶偏导数,而 f_xy 和 f_yx 分别表示对 x 和 y 的混合偏导数。对于多元函数,Hessian矩阵是一个对称矩阵。

在优化问题中,Hessian矩阵的性质对于判断函数的局部极大值、极小值或鞍点至关重要。例如,如果在某点的 Hessian 矩阵是正定的,则该点可能是局部最小值点;如果是负定,则可能是局部最大值点;如果矩阵不定,则该点可能是鞍点。

4.1.2 如何计算Hessian矩阵

计算Hessian矩阵涉及对目标函数求二阶偏导数。在实际操作中,对于不同的函数,计算过程可能比较复杂。不过,对于一些常见的函数,我们可以使用数学软件或编程语言提供的自动微分工具来计算。

以函数 f(x,y) = x^2 + y^2 为例,我们可以计算其 Hessian 矩阵如下:

f_xx = d^2f/dx^2 = 2
f_yy = d^2f/dy^2 = 2
f_xy = f_yx = d^2f/dx/dy = 0

因此,Hessian矩阵为:

H = [ 2, 0 ]
    [ 0, 2 ]

在实际的编程实现中,我们可以使用数学软件包(如MATLAB、NumPy或SciPy)来自动计算Hessian矩阵。

import numpy as np

# 定义函数
def f(x):
    return x[0]**2 + x[1]**2

# 计算Hessian矩阵
x = np.array([1.0, 1.0])
hessian = np.array([[np.double(np.gradient(np.gradient(f(x), axis=0)[0], axis=0)[0]), np.double(np.gradient(np.gradient(f(x), axis=0)[1], axis=1)[0])],
                    [np.double(np.gradient(np.gradient(f(x), axis=1)[0], axis=0)[0]), np.double(np.gradient(np.gradient(f(x), axis=1)[1], axis=1)[0])]])
print(hessian)

4.2 梯度计算方法与应用

4.2.1 梯度的基本概念

梯度是一个向量,它指向函数增长最快的方向。在优化问题中,梯度为零的点是函数的局部极值点。梯度向量中的每个分量代表了函数在对应变量方向上的变化率。

对于函数 f(x,y),梯度表示为:

grad(f) = [ f_x, f_y ]^T

其中 f_x 和 f_y 分别代表对 x 和 y 的一阶偏导数。

4.2.2 梯度下降法的原理及实现

梯度下降法是一种寻找函数最小值的迭代优化算法。基本思想是:从一个初始点开始,沿着函数梯度的反方向(即下降最快的方向)进行迭代,逐步接近函数的最小值点。

以下是使用梯度下降法的基本步骤:

  1. 选择一个初始点 x_0,并设定学习率 α。
  2. 计算函数在当前点的梯度:g_k = grad(f)(x_k)。
  3. 更新迭代点:x_{k+1} = x_k - α * g_k。
  4. 重复步骤2和3,直到满足终止条件(如梯度足够小,或达到预定的迭代次数)。

接下来是一个使用Python实现梯度下降法的示例:

def gradient_descent(f, grad_f, x_0, learning_rate=0.1, tolerance=1e-6, max_iterations=1000):
    x_k = x_0
    for k in range(max_iterations):
        g_k = grad_f(x_k)
        if np.linalg.norm(g_k) < tolerance:  # 当梯度的模长小于容忍度时停止迭代
            break
        x_k = x_k - learning_rate * g_k
    return x_k

# 定义函数 f 及其梯度 grad_f
def f(x):
    return x[0]**2 + x[1]**2

def grad_f(x):
    return np.array([2*x[0], 2*x[1]])

# 初始点
x_0 = np.array([-3.0, 4.0])

# 执行梯度下降法
min_point = gradient_descent(f, grad_f, x_0)
print("最小点:", min_point)

通过这种方法,我们可以求解出各种复杂函数的最小值点,尤其是在机器学习领域,梯度下降法是大多数优化算法的核心组成部分。

5. 雅可比矩阵及其在定位中的应用

5.1 雅可比矩阵的基本理论

5.1.1 雅可比矩阵的定义与数学性质

雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,它为多变量函数的局部线性逼近提供了数学工具。对于一个从 ( \mathbb{R}^n ) 到 ( \mathbb{R}^m ) 的向量函数 ( F(\mathbf{x}) ),雅可比矩阵 ( J ) 定义为函数 ( F ) 各分量对 ( \mathbf{x} ) 各分量偏导数组成的矩阵:

[ J = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \ \vdots & \ddots & \vdots \ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix} ]

雅可比矩阵有以下性质:

  • 线性逼近 :雅可比矩阵可以用来线性逼近 ( F ) 在某点附近的局部变化。
  • 梯度的关系 :当 ( m = 1 ),雅可比矩阵退化为梯度向量。
  • 链式法则 :复合函数的雅可比矩阵可由各组成部分函数的雅可比矩阵乘积得到。
5.1.2 雅可比矩阵在优化问题中的角色

在优化问题中,雅可比矩阵常常用于对问题进行线性化处理,并在迭代优化过程中指导搜索方向。在非线性最小二乘法(NLS)问题中,雅可比矩阵与残差函数的梯度有关,其每一行反映了观测函数对某一参数变化的敏感程度。

在求解优化问题时,雅可比矩阵的列向量通常与参数空间中的正交方向相关联,它能够指出解空间中的主要曲率方向。因此,它对于设计快速收敛的优化算法至关重要,如牛顿法及其变种。

5.2 雅可比矩阵在TOA定位中的应用

5.2.1 定位模型中的雅可比矩阵计算

在TOA(到达时间)定位模型中,我们需要估计发射源的位置,而雅可比矩阵为我们提供了如何调整位置估计以减少时间差测量误差的方法。假设我们有一个发射源和若干接收器之间的距离差测量值,我们希望通过调整发射源的位置坐标 ( (x, y, z) ) 来最小化距离差模型与实际测量值之间的误差。

在这种情况下,雅可比矩阵 ( J ) 的每一行对应一个距离测量值,而列对应于未知坐标 ( (x, y, z) ) 的偏导数。具体计算过程需要对时间差测量方程求偏导数:

[ J = \begin{bmatrix} \frac{\partial T_1}{\partial x} & \frac{\partial T_1}{\partial y} & \frac{\partial T_1}{\partial z} \ \vdots & \vdots & \vdots \ \frac{\partial T_m}{\partial x} & \frac{\partial T_m}{\partial y} & \frac{\partial T_m}{\partial z} \end{bmatrix} ]

其中,( T_i ) 表示第 ( i ) 个接收器测量到的到达时间,而偏导数可以通过链式法则计算得到。

5.2.2 雅可比矩阵在算法优化中的作用

在基于NLS的TOA定位算法优化中,雅可比矩阵被用来计算残差关于位置参数的梯度。这个梯度信息可用于指导定位优化算法的搜索方向,使得算法能够快速地收敛到最佳估计位置。

例如,在使用Gauss-Newton算法进行优化时,每次迭代都会用到雅可比矩阵来构造一个近似二阶导数的矩阵,称为Hessian矩阵的近似值。Gauss-Newton算法的迭代步骤如下:

  1. 使用当前位置估计计算雅可比矩阵 ( J )。
  2. 计算残差 ( \mathbf{r} ) 和近似Hessian矩阵 ( J^TJ )。
  3. 解线性方程组 ( J^TJ\Delta\mathbf{x} = -J^T\mathbf{r} ) 来找到一个搜索方向 ( \Delta\mathbf{x} )。
  4. 更新位置估计:( \mathbf{x} {\text{new}} = \mathbf{x} {\text{old}} + \alpha \Delta\mathbf{x} ),其中 ( \alpha ) 是步长。

在这个过程中,雅可比矩阵直接决定了算法的收敛速度和效率。如果雅可比矩阵计算准确且模型误差小,Gauss-Newton算法可以非常高效地找到最小化残差的位置估计。

% 假设已经有了一个粗略的位置估计posOld和雅可比矩阵J
% 计算残差
residuals = calculateResiduals(J, posOld);

% 计算近似Hessian矩阵和梯度
Hessian = J' * J;
grad = -J' * residuals;

% 解线性方程组求解搜索方向
deltaPos = Hessian \ grad;

% 更新位置估计
posNew = posOld + deltaPos;

以上代码展示了如何在MATLAB中使用雅可比矩阵来执行Gauss-Newton算法的一步迭代。在这个例子中, calculateResiduals 是一个假定的函数,用于计算残差向量。实际应用中需要根据具体模型来计算残差。此外,由于计算Hessian矩阵可能涉及矩阵求逆,对于大规模问题来说,可能需要更高效的数值方法来提高计算效率。

下面的流程图展示了如何使用雅可比矩阵在NLS_TOA定位问题中迭代寻找最优解的过程:

flowchart TD
    A[开始] --> B[初始化位置估计]
    B --> C[计算雅可比矩阵]
    C --> D[计算残差]
    D --> E[计算近似Hessian矩阵和梯度]
    E --> F[求解线性方程组得到搜索方向]
    F --> G[更新位置估计]
    G --> H{是否收敛}
    H -- 是 --> I[输出最优位置估计]
    H -- 否 --> C
    I --> J[结束]

通过这个流程,我们可以理解雅可比矩阵在NLS_TOA优化算法中的核心作用,以及如何通过迭代逼近最优解。雅可比矩阵不仅在数学上提供了优化问题的一阶导数信息,而且在计算实践中指导我们如何高效地调整模型参数。

6. MATLAB编程实践:实现TOA定位优化

在探索了TOA定位技术的理论基础、优化策略,以及Hessian矩阵和梯度计算方法后,我们将目光转向实际操作层面。本章节将通过MATLAB编程实践,演示如何实现TOA定位优化。MATLAB是一个广泛应用于工程计算、数据分析和算法开发的高性能编程环境。本章节将指导您完成MATLAB的环境配置,并逐步介绍如何编写NLS_TOA定位优化程序。

6.1 MATLAB编程环境介绍

6.1.1 MATLAB软件的功能与特点

MATLAB全称为“Matrix Laboratory”,它的特点在于其矩阵处理能力和丰富的内置函数库。MATLAB具备强大的数值计算能力,尤其在信号处理、图像处理、控制系统设计等领域具有广泛的应用。

  • 交互式环境 :MATLAB提供了命令行和脚本环境,便于用户进行快速计算和测试。
  • 矩阵和数组运算 :MATLAB中所有的数据类型均为矩阵,这使得进行复杂的数值运算变得简单。
  • 丰富的工具箱 :提供了信号处理、图像处理、优化工具箱等多种专业工具箱。
  • 可视化功能 :MATLAB内置了强大的数据可视化功能,能够方便地制作出高质量的图表。

6.1.2 环境配置与基础编程技巧

开始编程之前,您需要确保已经正确安装了MATLAB软件。以下是配置MATLAB环境和学习基础编程技巧的几个步骤:

  • 安装和激活 :按照官方指南安装MATLAB,并进行激活。
  • 熟悉命令窗口 :通过输入简单的数学运算练习,熟悉命令行的基本操作。
  • 掌握脚本编写 :通过编写简单的脚本文件来学习如何组织代码。
  • 使用help和doc :利用MATLAB的帮助文档功能来查询函数和命令的用法。
  • 实践示例程序 :下载并运行一些示例程序,理解MATLAB代码的结构和风格。

6.2 MATLAB实现NLS_TOA定位优化案例

6.2.1 编写NLS_TOA定位优化的MATLAB程序

为了实现NLS_TOA定位优化,我们将编写一个MATLAB程序,该程序将执行以下步骤:

  • 初始化TOA测量数据和初始参数。
  • 使用非线性最小二乘法求解定位问题。
  • 应用优化算法,如Levenberg-Marquardt算法,来提高求解效率。
  • 绘制优化结果,并对比优化前后的定位精度。

以下是一个简化的MATLAB代码示例,展示了如何实现NLS_TOA定位优化:

% 假设我们有以下TOA测量数据和发射器位置
t = [1.5; 2.0; 2.5]; % TOA测量时间
c = 3e8; % 光速
d = [100; 200; 300]; % 发射器到接收器的估计距离

% 非线性最小二乘法求解定位问题
options = optimoptions('lsqnonlin', 'Algorithm', 'levenberg-marquardt');
x0 = [0, 0]; % 初始估计位置
[optim_x, resnorm] = lsqnonlin(@nls_toa, x0, [], [], t, c, d, options);

% 绘制优化前后的位置比较
figure;
plot3(d(1,:), d(2,:), d(3,:), 'ro'); % 原始测量位置
hold on;
plot3(optim_x(1), optim_x(2), optim_x(3), 'b*'); % 优化后的位置
xlabel('X');
ylabel('Y');
zlabel('Z');
title('TOA定位优化前后位置比较');
legend('原始测量位置', '优化后位置');
grid on;
hold off;

function residual = nls_toa(x, t, c, d)
    % 计算估计距离与测量距离的差值
    estimated_d = sqrt(sum((d-[x(1);x(2);x(3)]').^2));
    % 计算残差
    residual = (estimated_d - c * t);
end

6.2.2 程序调试、优化与结果分析

在编写程序后,进行程序的调试和优化是至关重要的。请按照以下步骤进行:

  • 调试 :运行程序并检查是否有错误。如果有,修正这些错误。
  • 优化 :调整参数设置,如初始位置估计和算法选项,以改善性能。
  • 分析 :评估优化算法的性能,通过比较优化前后的定位精度来分析结果。

以上,我们通过MATLAB编程实践了解了如何实现TOA定位优化。这个过程涉及到了数据的初始化、非线性最小二乘法求解、以及最终的性能评估。通过这种方式,您可以进一步深入理解TOA定位技术,并在实际项目中加以应用。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本MATLAB代码集专注于非线性最小二乘(NLS)方法在单次测量中应用于到达时间(TOA)定位问题的实践。通过这一系列的代码,用户可以理解非线性最小二乘法如何应用于无线通信和导航系统中,以简化定位流程并提高理解度。代码文件包括主运行逻辑、Hessian矩阵计算、梯度计算和雅可比矩阵计算等,为学习和实践NLS方法提供了实用的工具。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值