摘要: 在Python中如何使用scikit-learn模型对分类、回归进行预测?本文简述了其实现原理和代码实现。
一旦你在scikit-learn中选择好机器学习模型,就可以用它来预测新的数据实例。初学者经常会有这样的疑问:
如何在scikit-learn中用我自己的模型进行预测?
在本教程中,你将会发现如何在Python的机器学习库scikit-learn 中使用机器学习模型进行分类和回归预测。文章结构如下:
1.如何构建一个模型,为预测做好准备。
2.如何在scikit-learn库中进行类别和概率预测。
3.如何在scikit-learn库中进行回归预测。
一、构建一个模型
在进行预测之前,你必须训练一个最终模型。你可以使用k-fold交叉验证或训练/测试数据,对模型进行训练。这样做的目的就是为了评估模型在样本外数据上的表现及其性能,比如新的数据。
你可以在这里了解更多关于如何训练最终模型的信息:
如何训练一个最终的机器学习模型?
如何预测分类模型
分类问题,就是模型学习输入特征与输出特征之间的映射,确定某一个或多个数据实例是否为某一个类标签的问题,比如“是垃圾邮件”和“不是垃圾邮件”。
下面是针对一个简单二元分类问题的Logistic回归模型的示例代码。
尽管我们在本教程中使用Logistic回归,在scikit-learn中几乎所有的分类算