雅克比解方程c语言,雅可比迭代法解方程组的C\C++程序

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

下面程序是解下面这个方程:(可以改变方程系,程序即可解不同的方程)

方程:

5x1+2x2+x3=8

2x1+8x2-3x3=21

x1-3x2-6x3=1

用VC6.0编译,保存代码时,以.C为后缀名

************************************/

#include

#include

#include

#include

#define EPS 1e-6/*允许误差*/

#define MAX 100/*迭代次数的最大值*/

float *Jacobi(float a[3][4],int n);

main()

{

int i;

float a[3][4]={5,2,1,8,2,8,-3,21,1,-3,-6,1};/*方程的系数*/

float *x;

x=(float *)malloc(3*sizeof(float));/*动态申请内存,用于保存方程的解*/

x=Jacobi(a,3);/*调用雅可比函数*/

for(i=0;i<3;i++)/*输出方程的解*/

{

printf("x[%d]=%f\t",i,x[i]);

}

printf("\n");

getch();

}

float *Jacobi(float a[3][4],int n)

{

float *x,*y;

float epsilon,s;

int i,j,k=0;

x=(float *)malloc(n*sizeof(float));

y=(float *)malloc(n*sizeof(float));

for(i=0;i

x[i]=0;

while(1)

{

epsilon=0;/*容允误差*/

k++;/*迭代次数计数*/

for(i=0;i

{

s=0;

for(j=0;j

{

if(j==i)

{

continue;

}

s+=a[i][j]*x[j];

}

y[i]=(a[i][n]-s)/a[i][i];/*计算"x^(k+1)"*/

epsilon+=(float)fabs(y[i]-x[i]);

}

if(epsilon

{

printf("迭代次数为:%d\n",k);

return x;/*返回方程的解*/

}

if(k>=MAX)

{

printf("方程不收敛\n");

return y;

}

for(i=0;i

{

x[i]=y[i];

}

}

}

雅可比迭代法是一种用于求解线性方程组的迭代方法,其基本思想是将线性方程组的系数矩阵分为一个对角矩阵和一个非对角矩阵的和,然后将方程组逐步逼近真C语言实现雅可比迭代法求解方程组代码如下: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #define N 3 int main() { double A[N][N] = {{4, -1, 0}, {-1, 4, -1}, {0, -1, 4}}; // 系数矩阵 double b[N] = {10, 10, 10}; // 常数向量 double x[N] = {0, 0, 0}; // 初值向量 double x_new[N] = {0, 0, 0}; // 新的向量 double eps = 1e-9; // 精度要 int max_iter = 10000; // 最大迭代次数 int iter = 0; // 迭代次数计数器 double err = 0; // 误差 while (iter < max_iter) { // 计算新的向量 for (int i = 0; i < N; i++) { double sum = 0; for (int j = 0; j < N; j++) { if (i != j) { sum += A[i][j] * x[j]; } } x_new[i] = (b[i] - sum) / A[i][i]; } // 计算误差 err = 0; for (int i = 0; i < N; i++) { err += fabs(x_new[i] - x[i]); } // 更新向量 for (int i = 0; i < N; i++) { x[i] = x_new[i]; } // 判断是否满足精度要 if (err < eps) { break; } iter++; } // 输出结果 printf("Solution:\n"); for (int i = 0; i < N; i++) { printf("%.6f ", x[i]); } printf("\n"); return 0; } ``` 需要注意的是,在实际使用中,为了提高收敛速度,还可以通过调整系数矩阵的对角线元素来加速迭代。具体方法是,将系数矩阵的对角线元素改为非零元素的绝对值之和。这样一来,每次迭代的误差就会减小,收敛速度也会加快。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值