能力画像
1 工程实现能力 C++ Python (偏数据分析和算法)===》基础
(1)学习通道:基础语法和数据结构
(2)工具:IDE (pycharm)
(3)项目:数字图像处理计算机视觉
2 数理分析数理统计基础 《数据分析》和《统计学》===》基础
3 kaggle 天池比赛 leetcode ==》训练场=》进阶Python编程能力和对机器学习,计算机视觉领域知识的理解
4 计算机视觉、机器学习、图像/视频分析与处理等相关领域技术和应用,有大量实践经验 ===》方向
5 机器学习算法、模式识别、深度学习、增强学习、最优化===》方法
6 linux开发,大规模数据处理===》平台
7 caffe\tensorflow\pytorch\MXnet\spark\XGBoost===》框架
8 阅读和撰写英文论文===》充电
学习路线
1 学习Python编程基础:数据获取 --> 数据清洗 --> 特征工程 --> 机器学习模型 --> 可视化 (2个计算机视觉kaggle项目+3个结构化数据分析项目+1个包括爬虫的项目)
刷leetcode
2 tensorflow + pytorch + MXnet巩固:分别复现5篇目标识别论文 --> XGBoost学习 --> 选择一个框架实现增强学习复现(GitHub)
3 C++学习
4 linux学习《鸟叔的私房菜》
5 mysql(oracle)
6 Hadoop + 分布式存储(Hive)
7 理论强化:《数据分析》、《统计学》
时间规划
学习路线1
项目一:结构化数据分析项目(1周)
(1)分类项目: Digital Recognition(2天)
(2)回归项目:Titanic(2天)、Advanced Regression Techniques(2天)
(3)出一篇总结
项目二:计算机视觉项目(1周)
(1)目标分类:猫狗大战(3天)
(2)目标识别:Airbus Ship Detection Challenge(3天)
(3)出一篇总结
kaggle分类比赛的套路:
1 模型
blending重量级三剑客:
Resnet50
Inception-Resnet-v2
EfficientB7
blending轻量级三剑客:
Resnet18
Inceptionv4
EfficientB0
blending超轻量级三剑客:
mobilenetv2
shufflenetv2
squeezev1.1
2 数据
Autoaugment
Cutout
Random erasing
3 目标函数
Focal Loss
Arc Margin
Cos Margin
4 优化算法
Warmup
SGD
项目三:Python爬虫与数据分析(1周)
《Python爬虫开发与项目实战》
《利用Python爬虫爬取淘宝商品做数据挖掘分析》
未完待续…
##学习路线2
##学习路线3
##学习路线4
##学习路线5
##学习路线6
##学习路线7