学习规划

能力画像

1 工程实现能力 C++ Python (偏数据分析和算法)===》基础

(1)学习通道:基础语法和数据结构

(2)工具:IDE (pycharm)

(3)项目:数字图像处理计算机视觉

2 数理分析数理统计基础 《数据分析》和《统计学》===》基础

3 kaggle 天池比赛 leetcode ==》训练场=》进阶Python编程能力和对机器学习,计算机视觉领域知识的理解

4 计算机视觉、机器学习、图像/视频分析与处理等相关领域技术和应用,有大量实践经验 ===》方向

5 机器学习算法、模式识别、深度学习、增强学习、最优化===》方法

6 linux开发,大规模数据处理===》平台

7 caffe\tensorflow\pytorch\MXnet\spark\XGBoost===》框架

8 阅读和撰写英文论文===》充电

学习路线

1 学习Python编程基础:数据获取 --> 数据清洗 --> 特征工程 --> 机器学习模型 --> 可视化 (2个计算机视觉kaggle项目+3个结构化数据分析项目+1个包括爬虫的项目)

		      刷leetcode

2 tensorflow + pytorch + MXnet巩固:分别复现5篇目标识别论文 --> XGBoost学习 --> 选择一个框架实现增强学习复现(GitHub)
3 C++学习

4 linux学习《鸟叔的私房菜》

5 mysql(oracle)

6 Hadoop + 分布式存储(Hive)

7 理论强化:《数据分析》、《统计学》

时间规划

学习路线1

项目一:结构化数据分析项目(1周)

(1)分类项目: Digital Recognition(2天)
(2)回归项目:Titanic(2天)、Advanced Regression Techniques(2天)
(3)出一篇总结

项目二:计算机视觉项目(1周)

(1)目标分类:猫狗大战(3天)
(2)目标识别:Airbus Ship Detection Challenge(3天)
(3)出一篇总结

kaggle分类比赛的套路:

1 模型
blending重量级三剑客:

Resnet50
Inception-Resnet-v2
EfficientB7
blending轻量级三剑客:

Resnet18
Inceptionv4
EfficientB0
blending超轻量级三剑客:

mobilenetv2
shufflenetv2
squeezev1.1
2 数据
Autoaugment
Cutout
Random erasing
3 目标函数
Focal Loss
Arc Margin
Cos Margin
4 优化算法
Warmup
SGD

项目三:Python爬虫与数据分析(1周)

《Python爬虫开发与项目实战》
《利用Python爬虫爬取淘宝商品做数据挖掘分析》
未完待续…
##学习路线2
##学习路线3
##学习路线4
##学习路线5
##学习路线6
##学习路线7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值