通知:我已经将刷题攻略全部整理到了Github :https://github.com/youngyangyang04/leetcode-master,方便大家在电脑上阅读,这个仓库每天都会更新,大家快去给一个star支持一下吧!
746. 使用最小花费爬楼梯
题目链接:https://leetcode-cn.com/problems/min-cost-climbing-stairs/
数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。
每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。
请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。
示例 1:
输入:cost = [10, 15, 20] 输出:15 解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。 示例 2:
输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 输出:6 解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。
提示:
- cost 的长度范围是 [2, 1000]。
- cost[i] 将会是一个整型数据,范围为 [0, 999] 。
思路
这道题目可以说是昨天动态规划:爬楼梯的花费版本。
注意题目描述:每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯
所以示例1中只花费一个15 就可以到阶梯顶,最后一步可以理解为 不用花费。
读完题大家应该知道指定需要动态规划的,贪心是不可能了。
- 确定dp数组以及下标的含义
使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。
dp[i]的定义:第i个台阶所花费的最少体力为dp[i]。
对于dp数组的定义,大家一定要清晰!
- 确定递推公式
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。
那么究竟是选dp[i-1]还是dp[i-2]呢?
一定是选最小的,所以dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
注意这里为什么是加cost[i],而不是cost[i-1],cost[i-2]之类的,因为题目中说了:每当你爬上一个阶梯你都要花费对应的体力值
- dp数组如何初始化
根据dp数组的定义,dp数组初始化其实是比较难的,因为不可能初始化为第i台阶所花费的最少体力。
那么看一下递归公式,dp[i]由dp[i-1],dp[i-2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。
所以初始化代码为:
vector dp(cost.size());dp[0] = cost[0];dp[1] = cost[1];
- 确定遍历顺序
最后一步,递归公式有了,初始化有了,如何遍历呢?
本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。
因为是模拟台阶,而且dp[i]又dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。
但是稍稍有点难度的动态规划,其遍历顺序并不容易确定下来。
例如:01背包,都知道两个for循环,一个for遍历物品嵌套一个for遍历背包容量,那么为什么不是一个for遍历背包容量嵌套一个for遍历物品呢?以及在使用一维dp数组的时候遍历背包容量为什么要倒叙呢?
这些都是遍历顺序息息相关。当然背包问题后续「代码随想录」都会重点讲解的!
- 举例推导dp数组
拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:
746.使用最小花费爬楼梯
如果大家代码写出来有问题,就把dp数组打印出来,看看和如上推导的是不是一样的。
以上分析完毕,整体C++代码如下:
// 版本一class Solution {public: int minCostClimbingStairs(vector& cost) { vector dp(cost.size()); dp[0] = cost[0]; dp[1] = cost[1]; for (int i = 2; i
- 时间复杂度:O(n)
- 空间复杂度:O(n)
还可以优化空间复杂度,因为dp[i]就是由前两位推出来的,那么也不用dp数组了,C++代码如下:
// 版本二class Solution {public: int minCostClimbingStairs(vector& cost) { int dp0 = cost[0]; int dp1 = cost[1]; for (int i = 2; i
- 时间复杂度:O(n)
- 空间复杂度:O(1)
当然我不建议这么写,能写出版本一就可以了,直观简洁!
在后序的讲解中,可能我会忽略这种版本二的写法,大家只要知道有这么个写法就可以了哈。
总结
大家可以发现这道题目相对于 昨天的动态规划:爬楼梯有难了一点,但整体思路是一样。
从「力扣」动态规划算法:斐波那契数 到 「力扣」动态规划:爬楼梯 再到今天这道题目,录友们感受到循序渐进的梯度了嘛。
每个系列开始的时候,都有录友和我反馈说题目太简单了,赶紧上难度,但也有录友和我说有点难了,快跟不上了。
其实我选的题目都是有目的性的,就算是简单题,也是为了练习方法论,然后难度都是梯度上来的,一环扣一环。
但我也可以随便选来一道难题讲呗,这其实是最省事的,不用管什么题目顺序,看心情找一道就讲。
难的是把题目按梯度排好,循序渐进,再按照统一方法论把这些都串起来,哈哈,所以大家不要催我哈,按照我的节奏一步一步来就行啦。
我是程序员Carl,个人主页:https://github.com/youngyangyang04
这里每天8:35准时推送一道经典算法题目,我选择的每道题目都不是孤立的,而是由浅入深,环环相扣,帮你梳理算法知识脉络,轻松学算法!
@代码随想录 期待你的关注
我花了半年时间,整理的力扣刷题攻略,已经全部发布在Github上,点击下方链接查看吧!