计算机仿真技术习与练习
计算机仿真技术 复习与总结 连续系统模型描述 一、确定型系统的数学模型 1. 微分方程 2. 传递函数 3. 状态方程 4. 结构图 二、连续系统数学模型之间的转换 1、化微分方程为状态方程 2、化传递函数为状态方程 问题:如何求对应状态变量的初值 ? 方法:伴随方程法 (判别能观性,求状态初值) 连续系统仿真篇 离散化原理及要求 问题:数字计算机在数值及时间上的离散性----被仿真系统数值及时间上的连续性 连续系统仿真,从本质上: 对原连续系统从时间、数值两个方面对原系统进行离散化并选择合适的数值计算方法来近似积分运算 离散模型≈原连续模型? 相似原理: 则可认为两模型等价。 经典的连续系统仿真建模方法学 2、仿真建模方法 三个基本要求: (1)稳定性:若原连续系统是稳定的,则离散化后得到的仿真模型也应是稳定的。 (2)准确性:有不同的准确性评价准则,最基本的准则是: 绝对误差准则: 相对误差准则: 其中? 规定精度的误差量。 (3)快速性:若第n步计算对应的系统时间间隔为 计算机由y(tn)计算y(tn+1)需要的时间为Tn,若 Tn=hn 称为实时仿真;Tn?hn称为超实时仿真;Tn?hn 称为亚实时仿真,对应离线仿真 经典的连续系统仿真建模方法学 3、数值积分方法 Euler法 梯形法 Runge-Kutta法 实时Runge-Kutta法 实时仿真:要求仿真模型的运行速度往往与实际系统运行的速度保持一致。 一般的数值积分法难以满足实时仿真的要求,这不仅仅是因为由这些方法所得到的模型的执行速度较慢,而且这些方法的机理不符合实时仿真的特点。 经典的连续系统仿真建模方法学 实时仿真算法的特点 (1)算法的快速性 (2)算法执行中数据的可取性 基本方法: 数字计算机对连续系统仿真――时间离散,只能计算各计算步距点上的数值。 “离散相似法”:对传递函数作离散化处理得离散传递函数,称为频域离散相似模型――频域离散相似法 对状态方程离散化得时域离散相似模型――时域离散相似法 离散化处理:输入端:加上虚拟采样开关和虚拟信号重构器;输出端:加一个虚拟采样开关;虚拟采样周期:T,两者同步。 图1 连续系统的离散化处理 时域离散相似法 时域离散相似法 线性定常系统的解: 状态转移矩阵的计算 1)泰勒级数展开法 2)eAT加速收敛算法 eAT计算:在有些情况下,泰勒级数展开法收敛性较差,即需要取很多项才能达到精度要求。然而项数增加,大量矩阵乘法计算,矩阵计算引入的舍入误差大大增加,影响计算精度。 等效转移法 、缩方与乘方 时域离散相似法 增广矩阵法 对线性定常系统,离散模型: (1) 这种方法的误差来源于: (1) eAT的计算误差; (2)输入信号u(t)误差 尽管φ(T)、φm(T)可归结为eAT的计算,而且eAT的计算误差可以通过缩方与乘方的方法减少,然而,虚拟采样后的信号带来的误差却无法消除。 将输入信号也能作为系统的状态对待,那么只需要着眼于提高eAT的计算精度就能达到仿真精度的提高――增广矩阵法。 时域离散相似法 图2 增广状态系统结构图 频域仿真建模方法学 连续系统模型的离散化处理 频域仿真建模方法学 替换法 根据z变换理论,连续系统的s域变换到z域的时, 其映射关系是: 其中T为采样周期。 简单替换法(Euler法) 2. 双线性替换法 频域仿真建模方法学 根匹配法 例1 利用双线性替代(Tustin变化)求 二阶系统的差分模型。 则 替代公式 进行反变换得到相应的差分模型 例2 已知一阶系统 试求其仿真差分方程模型(根匹配法)。 2. 传递函数的标准形式 传递函数 3. G(s)有一个极点 4. 将p1映射到z平面上,得 5. G(s)有一个零点 6. 将q1映射到z平面上, 7. 写出离散传递函数 求终值 a) 确定连续系统的终值 设连续系统的输入为单位阶跃函数