利用dft对连续信号进行频谱分析_数字信号处理(六)---DFT的应用(二)用DFT进行谱分析...

本文探讨了如何使用离散傅立叶变换(DFT)对连续信号进行频谱分析,强调了实际DFT结果与理论结果的差异,主要由于有限样本点导致的时域矩形窗效应。同时,介绍了频率分辨率的概念,分析了不同点数对模拟和数字频率分辨率的影响,指出在信号分析中选择合适点数的重要性。
摘要由CSDN通过智能技术生成

引言:在信号与系统中,我们对连续信号的谱分析的过程是连续的,这不适合计算机的处理,而DFT是一种时域和频域都离散的变换,这样的变换结果才能让计算机处理,因此用DFT进行谱分析是其另一大应用,本文将介绍DFT谱分析的思想,并用实际例子为你介绍在谱分析过程中遇到的误差问题以及解决方法。

在前面的文章中,我们已经知道,DFT是在

上对于离散时间信号DTFT的均匀采样,那么把离散信号交给计算机进行DFT处理时,能否由DFT的包络得到准确的DTFT波形是我们关心的问题。(因为,毕竟频域是均匀采样,采样点之间不连续,可能因此错过两采样点间的关键信息点)这就涉及到频率分辨率的问题,只有所需的分辨率达到要求,才能较好的得到满足要求的DTFT。

一.实际DFT结果和理论结果的区别

由下面笔记内容:

52f1c2d858f2620264c8f8672c24f7d1.png

可见,对于一个单频的连续信号进行采样,我们不可能采用无限个点,在进行DFT操作得到真实的DTFT频谱。因此实际中,我们是采样了有限长的样本点,这样就相当于对采样信号在时域上加了一个长度有限的矩形窗,那时域相乘,频域卷积,故真正的由这一部分采样信号得到的DFT和理论分析的由DTFT采样得到的DFT还

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值