matlab用DFT分析三频频谱,设计一DFT在信号频谱分析中的应用

本文通过MATLAB编程探讨DFT在信号频谱分析中的应用,包括不同点数DFT计算、补零DFT对频谱影响以及高密度谱与高分辨率频谱的比较。通过具体实例,分析补零DFT的作用,讨论提高频谱密度和分辨率的方法。
摘要由CSDN通过智能技术生成

设计一 DFT在信号频谱分析中的应用

一、设计目的

1. 熟悉DFT的性质。

2. 加深理解信号频谱的概念及性质。

3. 了解高密度谱与高分辨率频谱的区别。

二、设计任务与要求

1.学习用DFT和补零DFT的方法来计算信号的频谱。

2.用MATLAB语言编程来实现,在做课程设计前,必须充分预习课本DTFT、DFT及补零DFT的有关概念,熟悉MATLAB语言,独立编写程序。

三、设计内容

1. 用MATLAB语言编写计算序列x(n)的N点DFT的m函数文件dft.m。并与MATLAB中的内部函数文件fft.m作比较。

2. 对离散确定信号 x(n)cos(0.48n)cos(0.52n) 作如下谱分析:

(1) 截取x(n)使x(n)成为有限长序列N(0nN-1),(长度N自己选)写程序计

算出x(n)的N点DFT X(k),画出时域序列图xn~n和相应的幅频图X(k)~k。

参考程序如下:

假设N取10,

即 0 ≤n ≤ 9 时, 编写程序,计算出X(n)的10点DFT Xk。

n = 0:9;

xn=cos(0.48*pi*n)+cos(0.52*pi*n);

Xk = fft (xn, 10);

subplot(2,1,1); stem(n, xn); grid;

subplot(2,1,2); stem(n, abs(Xk)); grid;

(2) 将 (1)中x(n)补零加长至M点,长度M自己选,(为了比较补零长短的影响,M可以取两次值,一次取较小的整数,一次取较大的整数)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值