java斐波那契优化,[LintCode]斐波纳契数列实现及优化

由于简书不支持 Latex ,建议去我的博客看原文:斐波纳契数列实现及优化

求关注、求交流、求意见、求建议。

前言

LintCode 是专注代码面试的在线评测系统,有很多代码题,可以用 Java、C++、Python 在线答题,我觉得还不错,就决定把做一做这些题,然后把题目的实现、优化思路写下来,一来是为了有更深的理解,二来是讨论一下还有没有更好的方法。

题目

LintCode:斐波纳契数列

描述

查找 斐波纳契数列 中第 N 个数。

所谓的 斐波纳契数列 是指:

前两个数是 0 和 1 。

第 i 个数是第 i-1 个数和第 i-2 个数的和。

斐波纳契数列的前10个数字是:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ...

样例

给定 1,返回 0

给定 2,返回 1

给定 10,返回 34

实现

递归实现

问题分析

根据 斐波那契数列 的定义得:

$$

\begin{aligned}

f(1) & = 0\

f(2) & = 1\

f(n) & = f(n - 1) + f(n - 2)\qquad n\in{3,4,5\ldots}

\end{aligned}

$$

根据上述表达式最明显的实现方式便是递归。

实现 - C++

class Solution{

public:

int fibonacci(int n) {

if (n == 1) {

return 0;

} else if (n == 2) {

return 1;

} else {

return fibonacci(n - 1) + fibonacci(n - 2);

}

}

};

实现 - Java

class Solution {

public int fibonacci(int n) {

if (n == 1) {

return 0;

} else if (n == 2) {

return 1;

} else {

return fibonacci(n - 1) + fibonacci(n - 2);

}

}

}

结果分析

结果:结果不尽人意,速度非常慢,甚至没有通过 LintCode 的评测。

分析:这种递归不同于一般的递归,在 n 较大时,两次递归调用中存在大量的重复运算,导致速度非常慢。

非递归实现

问题分析

在递归实现中,由于大量的重复运算导致速度慢,所以采用非递归形式,思路也非常简单:从 f(0) 开始根据公式叠加至 f(n) 。

实现 - C++

class Solution{

public int fibonacci(int n) {

if (n == 1) {

return 0;

} else if (n == 2) {

return 1;

} else {

int n1 = 0;

int n2 = 1;

int sn = 0;

while (n > 2) {

sn = n1 + n2;

n1 = n2;

n2 = sn;

n--;

}

return sn;

}

}

};

实现 - Java

class Solution{

public:

int fibonacci(int n) {

if (n == 1) {

return 0;

} else if (n == 2) {

return 1;

} else {

int n1 = 0;

int n2 = 1;

int sn = 0;

while (n > 2) {

sn = n1 + n2;

n1 = n2;

n2 = sn;

n--;

}

return sn;

}

}

};

结果分析

结果:经测试 C++ 最快可以以 10ms 轻松通过 LintCode 的评测。

分析:时间复杂度为 o(n) ,空间复杂度为 o(1) ,效果不错。

细节:使用 while 代替 for 节省了一个 Int(4Byte) 的空间。

递归实现优化

问题分析

类似的递归重复计算问题很多,但未必都可以简单的像 斐波那契数列 问题这么容易化为非递归,那么有没有办法递归的前提下保证没有重复计算呢?思路也很简单:计算结果加入缓存。

实现 - C++

class Solution{

public:

vector buffer;

int fibonacci(int n) {

if(n == 1){

return 0;

} else if (n == 2){

return 1;

}

int n1, n2, sn;

if (buffer.size() == 0) {

buffer.push_back(0);

buffer.push_back(1);

}

if (buffer.size() > n - 2) {

n1 = buffer[n - 2];

} else {

n1 = fibonacci(n - 1);

}

if (buffer.size() > n - 3) {

n2 = buffer[n - 3];

} else {

n2 = fibonacci(n - 2);

}

sn = n1 + n2;

if (buffer.size() < n) {

buffer.push_back(sn);

}

return sn;

}

};

实现 - Java

class Solution {

ArrayList buffer = new ArrayList();

public int fibonacci(int n) {

if(n == 1){

return 0;

} else if (n == 2){

return 1;

}

int n1, n2, sn;

if (buffer.size() == 0) {

buffer.add(0);

buffer.add(1);

}

if (buffer.size() > n - 2) {

n1 = buffer.get(n - 2);

} else {

n1 = fibonacci(n - 1);

}

if (buffer.size() > n - 3) {

n2 = buffer.get(n - 3);

} else {

n2 = fibonacci(n - 2);

}

sn = n1 + n2;

if (buffer.size() < n) {

buffer.add(sn);

}

return sn;

}

}

结果分析

结果:经测试 C++ 同样最快可以以 10ms 轻松通过 LintCode 的评测。 Java 也跑出了 1269ms 的成绩,可喜可贺。

分析:虽然空间复杂度相对非递归提升到了 o(n) ,不过在不改动递归结构的前提下,也算达到了不错的效果。

细节:

在枚举 f(1) 、 f(2) 后再声明变量,以节约内存空间。

n 是从 1 开始,buffer 是从 0 开始。

f(1) 和 f(2) 要一开始加进来,如果递归加入会顺序相反,导致结果出错。

矩阵快速幂实现

概述

根据@iFzzzh的提醒,发现了大大降低时间复杂度的方法。

原理

先介绍一下什么是快速幂,如下式:

$$

f(n) = a^n\tag{1}

$$

当 $n$ 为偶数时则有:

$$

f(n) = (a{\frac{n}{2}})2=f(\frac{n}{2})^2\tag{2}

$$

当 $n$ 为奇数时则有:

$$

f(n) = (a{\lfloor\frac{n}{2}\rfloor})2 \times a=f(\lfloor\frac{n}{2}\rfloor)^2\times a\tag{3}

$$

显然 (1) 式时间复杂度为 o(n) ,而 (2) (3) 式复杂度为 o(log_2 n),这就是快速幂,简单的来说就是以二分降幂的方式减少计算步骤。

问题分析

类比上述的快速幂法,采用矩阵的方式也可以将 斐波那契数列 化为 a^n 的格式,达到降幂的效果:

$$

\begin{aligned}

\begin{bmatrix}

f(n)\

f(n-1)\

\end{bmatrix}&=

\begin{bmatrix}

f(n-1)+f(n-2)\

f(n-1)\

\end{bmatrix}\\

&=\begin{bmatrix}

1 & 1\

1 & 0\

\end{bmatrix}\times

\begin{bmatrix}

f(n-1)\

f(n-2)\

\end{bmatrix}\\

&=\begin{bmatrix}

1 & 1\

1 & 0\

\end{bmatrix}^2\times

\begin{bmatrix}

f(n-2)\

f(n-3)\

\end{bmatrix}\

&\qquad\qquad\quad\vdots\

&=\begin{bmatrix}

1 & 1\

1 & 0\

\end{bmatrix}^{n-2}\times

\begin{bmatrix}

f(2)\

f(1)\

\end{bmatrix}\

\end{aligned}

$$

根据 斐波那契数列 的定义,f(1) f(2) 为常数,此时便可以通过快速幂的方式计算 f(n) 的值了。

实现 - C++

class Solution{

public:

int fibonacci(int n) {

if(n == 1){

return 0;

}

if(n == 2){

return 1;

}

int s[2][2];

rxn(n - 2, s);

return s[0][0];

}

void rxn(int n, int result[2][2]){

if(n == 0){

result[0][0] = 1;

result[0][1] = 0;

result[1][0] = 0;

result[1][1] = 1;

return;

}

if(n == 1){

result[0][0] = 1;

result[0][1] = 1;

result[1][0] = 1;

result[1][1] = 0;

return;

}

if(n > 1){

int s[2][2] = {1, 1, 1, 0};

int buffer[2][2];

rxn(n / 2, buffer);

int buffer2[2][2];

mul(buffer, buffer, buffer2);

if(n % 2 == 0){

result[0][0] = buffer2[0][0];

result[0][1] = buffer2[0][1];

result[1][0] = buffer2[1][0];

result[1][1] = buffer2[1][1];

}else{

mul(buffer2, s, result);

}

}

}

void mul(int m1[2][2], int m2[2][2], int result[2][2]) {

result[0][0] = m1[0][0] * m2[0][0] + m1[0][1] * m2[1][0];

result[0][1] = m1[0][0] * m2[0][1] + m1[0][1] * m2[1][1];

result[1][0] = m1[1][0] * m2[0][0] + m1[1][1] * m2[1][0];

result[1][1] = m1[1][0] * m2[0][1] + m1[1][1] * m2[1][1];

}

};

实现 - Java

class Solution {

public int fibonacci(int n) {

if(n == 1){

return 0;

} else if (n == 2){

return 1;

}

int s[][] = new int[2][2];

rxn(n - 2, s);

return s[0][0];

}

public void rxn(int n, int[][] result){

if(n == 0){

result[0][0] = 1;

result[0][1] = 0;

result[1][0] = 0;

result[1][1] = 1;

return;

}

if(n == 1){

result[0][0] = 1;

result[0][1] = 1;

result[1][0] = 1;

result[1][1] = 0;

return;

}

if(n > 1){

int s[][] = {{1, 1}, {1, 0}};

int buffer[][] = new int[2][2];

rxn(n / 2, buffer);

int buffer2[][] = new int[2][2];

mul(buffer, buffer, buffer2);

if(n % 2 == 0){

result[0][0] = buffer2[0][0];

result[0][1] = buffer2[0][1];

result[1][0] = buffer2[1][0];

result[1][1] = buffer2[1][1];

}else{

mul(buffer2, s, result);

}

}

}

public void mul(int[][] m1, int[][] m2, int[][] result) {

result[0][0] = m1[0][0] * m2[0][0] + m1[0][1] * m2[1][0];

result[0][1] = m1[0][0] * m2[0][1] + m1[0][1] * m2[1][1];

result[1][0] = m1[1][0] * m2[0][0] + m1[1][1] * m2[1][0];

result[1][1] = m1[1][0] * m2[0][1] + m1[1][1] * m2[1][1];

}

}

结果分析

结果:C++ 最快可以以 10ms 通过 LintCode 的评测。 Java 最快可以以 1200ms 通过 LintCode 的评测。

分析:可能是由于 LintCode 测试数据不够大的原因,矩阵快速幂并没有体现出时间复杂度为 o(log_2 n) 应有的优势,不过根据其单步计算量提升,时间却与 非递归 递归优化 达到同一水平,可以判断出其效果还是有的。

总结

理论上讲的通的道理只是理论上,小问题到了手上解决掉才能明白。简单的问题弄透也不容易,我记录一下这个思路省得忘了,能够有人用得上自然更好。当然谁要是能给我个更好的答案才是极好的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值