arcgis重心迁移分析_研讨会讲座分享3:思维方法与解题实例分析

本文介绍了arcgis重心迁移分析的解题思维与策略,强调了条件利用、可视化、简单化在解题中的重要性。通过等腰直角三角形、中线性质等实例,展示了如何通过联想、猜测、尝试和推理解决复杂问题。文章还提出了数学解题的一般策略,包括定变分析、方程解析、设参列式和完形构造,并给出了多个解题实例,展示了解题常用方法和基本模型在实际问题中的应用。
摘要由CSDN通过智能技术生成
精彩不容错过,请点击上面文字添加关注!

三、思维方法与解题实例分析

1.解题的底层思维:条件用足,模型完整,则问题必解。

(1)观察联想:想一想,试一试,经常有发现。

条件是解题的出发点,根据条件联想相关的知识和经验,看看能不能有所发现。

(2)猜测推理:走一步,看一步,很快有思路。

条件结合相关规则推导新的结论,逐步向所求问题靠近,复杂问题需要多步逻辑链条,往往要走一步看一步才能找到正确的思路。

(3)可视化:画出来,写下来,省脑力又清楚。

大脑的工作记忆一般只能处理4个信息单位,所以不要把中间结论和相关信息储存在大脑里,要写在纸上,看在眼里,减轻大脑的运行负荷,提高思考效率。

(4)简单化:多联系,勤转化,变简单才容易。

所有疑难的复杂问题都是通过转化为熟悉的简单问题来解决的,比如多元方程组、高次方程最终都要转化为一元一次方程才能解决。

总体来说,解题是从模糊到清晰,从混沌到有序,从感性到理性,从具体到一般的过程。

解题就是以题目中的条件信息、学过的知识方法、已有的解题经验为基础,通过整理、分析、转化,不断地推导结论,修正思路,最终解决问题。

每解决一个问题都要展现思维过程,剖析思维得失,来获得经验,优化思维。

例1.如图,已知在△ABC中,AD是BC边上的高,∠BAC=45°,BD=6,CD=4,求△ABC的面积.

fd8e787515bde41f8e840dcd03beb1ba.png

45度是一个关键条件,由此联想到最常用最基本的模型:等腰直角三角形,以45度为内角构造等腰直角三角形,进一步利用全等三角形、相似三角形解决问题。

2950a70e50cab17aea735a20a13b318a.png

我们要培养学生形成一种意识:解题并不是一蹴而就一击必中,难题综合题常常需要经过联想、尝试、步步为营、峰回路转的过程,不能说一定要想好全部思路才能做题,而是要勤思考、勤动笔、多方联系、耐心探索,逐步让问题清晰。比如本题没有作等腰直角三角形之前,解题的整体思路是不清楚的,图形画出来之后,解题思路才逐步显现,问题被分解为等腰直角三角形、全等三角形、相似三角形等简单问题。这就体现了联想、猜测、尝试、推理、可视化、简单化这些底层思维在解题中的核心作用。

仅从等腰直角三角形这个切入点出发,还可以联想到下面的构造方法:

ad95a34ac0539c82f5919e5ab82c4891.png

7e087acf7fcf6e59f7e17c3c08ef4035.png

316efd69b3befa87d005a8bf95c2f781.png

f0bad882e0011931b80e79044bec8f67.png

2c1080da12d2e709bab077b97ba26198.png

dc7788d98c8d3bb8aafda54ace585cb4.png

aa3ff5323ac515763af9e60e21f54031.png

例2.如图,在△ABC中,AC=3,BC=4,若AC、BC边上的中线BE、AD垂直相交于O点,则AB=     .

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值