- 博客(44)
- 收藏
- 关注
原创 地学测绘遥感GIS专题知识库
【摘要】本文介绍了一个针对GIS、遥感与测绘领域学习者打造的系统化知识库,通过腾讯ima软件实现AI辅助学习。知识库分为四大模块:1)基础理论(经典教材);2)技术方法(影像处理、定量反演等);3)前沿研究(深度学习应用);4)工程实践(灾害监测案例)。该资源适用于不同需求用户:本科生可构建知识体系,考研党能快速掌握学科脉络,研究生可高效获取专题文献,行业新人可获得清晰学习路径。知识库支持脑图生成、内容提问等智能功能,旨在帮助用户节省文献检索时间,聚焦深度学习。(149字)
2025-12-27 15:44:54
555
原创 2025 全网免费电子书与数字人文资源指南:从鸠摩搜索到中华珍宝馆
2025 免费电子书与数字人文资源指南:从鸠摩搜索到中华珍宝馆。整理了全网最好用的 10 个免费阅读资源站。包含找书神器鸠摩搜索、Z-Library,高清古籍站书格、识典古籍,以及 Kindle 漫画专用站 Vol.moe。无论是畅销书还是绝版古籍,这里都有下载之道。电子书下载,鸠摩搜索,Z-Library,书格,Kindle漫画,古籍下载,PDF搜索,免费书库
2025-12-23 22:08:41
869
原创 学术论文网站综合
科研党必收藏:2025 最新学术搜索与免费文献下载工具汇总。 整理了一份超全的学术导航清单,涵盖综合搜索、OA 免费下载、AI 科研辅助、垂直学科数据库及选刊工具。包含 Google 学术、PubScholar、Unpaywall、AMiner 等核心工具的正确入口与使用技巧,助你打破科研信息壁垒。学术搜索,论文下载,Google Scholar,Sci-Hub,PubScholar,文献检索,科研工具,Unpaywall
2025-12-23 21:44:44
1255
原创 地信/遥感人请留步:发现一个正在憋大招的“宝藏预备役”网站
最近搜资料时偶然摸到了一个叫 Rsgoo 的小站。。该站虽内容尚少,但规划全面,涵盖技术教程、考研就业等板块,特色在于实战导向的内容和地信资源整合的愿景,包括计划中的高校导师库、考研真题等。若能持续更新,有望成为地信领域的重要学习平台,建议同行收藏关注。
2025-12-10 21:08:25
299
原创 一份给遥感学生的硬核算法指南:深挖 TheAlgorithms/Python 宝库
摘要: 推荐GitHub项目TheAlgorithms/Python,该项目以清晰代码呈现算法核心逻辑,适合理解与修改算法。内容涵盖四大方向: 影像分类与机器学习:包括SVM、随机森林等经典分类器及K-Means、DBSCAN等聚类算法,适用于遥感数据分类与反演。 影像处理与特征提取:提供直方图均衡化、边缘检测(如Canny)、SIFT特征等代码,助力影像增强与地物识别。 优化与深度学习基础:解析梯度下降、神经网络等原理,为理解复杂模型提供基础。
2025-08-25 19:34:35
1160
原创 告别matplotlib中文乱码:认识一下zhplot这个小而美的库
《zhplot:优雅解决Python数据可视化中文显示问题》摘要 针对matplotlib图表中文乱码问题,国产库zhplot提供了更优解决方案。该库通过自动检测并配置系统中文字体,无需繁琐的手动设置或冗余代码。
2025-08-24 16:41:28
343
原创 从入门到“炼丹”:一份写给遥感GISer的Python时间序列工具箱
时间序列分析工具全景指南 本文系统梳理了Python生态中处理时间序列数据的强大工具集,涵盖从基础预处理到前沿建模的完整分析流程。在数据预处理环节,Arrow简化了时间格式处理,tsmoothie提供多种平滑算法;特征工程方面,TSFRESH可自动提取750+特征,stumpy擅长模式发现;建模框架中,Darts和Sktime集成多种模型,statsmodels侧重统计验证,kats适合工业应用;另介绍了AutoTS等AutoML工具可自动优化模型选择。这些工具为遥感、气象等领域的时间序列分析提供了解决方案
2025-08-24 16:07:53
760
原创 遥感时序分析的基石:深度剖析Harmonized Landsat Sentinel-2 (HLS) 数据集的诞生、原理、特点与应用
HLS项目通过整合Landsat和Sentinel-2数据,解决了地球观测中时空分辨率的矛盾,实现了30米空间分辨率和2-3天观测频率的统一。最新v2.0版本采用云优化格式,覆盖全球陆地,通过几何对齐、大气校正、BRDF归一化和光谱谐和等精密算法,确保数据一致性。在GEE平台中,用户可便捷调用HLS数据,为全球尺度的生态环境监测和时序分析提供重要支持。
2025-08-24 00:15:25
2200
1
原创 Python 地理空间分析:核心库与学习路线图
本文系统梳理了Python GIS技术栈,分为四个层次:基础科学计算库(NumPy、Pandas)、核心空间分析工具(GeoPandas、GDAL、Rasterio等)、可视化库(Matplotlib、Folium等)以及领域专用工具(PySAL、NetworkX等)。重点介绍了各库的核心功能和应用场景,如GeoPandas处理矢量数据、Rasterio操作栅格数据、Folium创建交互地图等,并提供了入门学习建议。文章为GIS开发者提供了清晰的技术路线图,帮助读者根据需求选择合适的工具库。
2025-08-23 18:11:05
1166
原创 告别调包侠:这份NumPy“手撕”机器学习算法库,是遥感人不可多得的宝藏!
这份 numpy-ml 的文档对于那些想从“调包侠”进阶为真正理解算法内核的同学。遥感领域的学生和研究者往往需要对模型有更深入的理解,以便针对遥感数据的独特性(如多通道、大尺寸、小目标等)进行优化和创新。
2025-07-26 20:21:08
795
原创 遥感人的CV“军火库”:从ResNet到Transformer的核心文献指南
作为一名遥感领域的学习者,我们每天都在和各式各样的卫星、无人机影像打交道。无论是做地物分类、目标检测,还是进行变化检测和场景识别,我们都离不开一个强大的“引擎”——计算机视觉(CV)。文章囊括了从图像分类的开山之作到目标检测、语义分割的里程碑模型,再到如今席卷一切的 Transformer 架构。
2025-07-26 20:00:55
635
原创 中国城市遥感研究综述:四十年发展、应用与未来展望
吴志峰等人的《中国城市遥感研究综述》系统阐述了城市遥感作为“上帝视角”,如何深刻影响中国城市发展。历经四十载,该技术已从最初的手动解译发展到如今由人工智能驱动的自动化分析。它被广泛应用于监测城市扩张与三维结构,评估热岛效应与环境质量,支撑灾害应急响应,并通过夜间灯光等创新手段解码经济脉搏。展望未来,城市遥感正朝着构建“数字孪生”城市的目标迈进,为实现城市精细化管理和可持续发展提供了不可或缺的科技力量。
2025-07-06 13:11:23
927
原创 学习如何更好向GPT提问
如今以chatgpt为首的各种语言大模型应运而出,已经逐渐应用到平时的工作和学习中,但就算是使用同一种大模型提问同一个问题也有不同的答案,如何更快更好的获取优质答案是应该关心和学习的重点。
2024-09-01 16:02:55
1845
1
原创 遥感多模态基础大模型汇总-实时更新
遥感多模态基础大模型汇总,包括遥感视觉基础大模型,遥感视觉语言基础大模型,遥感基准数据集等大模型数据集和模型的汇总
2024-08-29 22:02:57
3071
原创 linux(Ubuntu )搭C++ 最新版GDAL完整教程
本文详细的介绍了在linux上如何安装编译c++版本的最新版本的GDAL库,介绍了从安装虚拟机,到安装linux系统,再到逐个配置相关依赖库,以及配置vs code c++环境调用gdal等完整流程
2024-08-25 15:31:04
2780
7
原创 遥感之常用各种指数总结大全
本文对上述各种领域应用的指数做了总结和整理,对于每个指数均附上了相应的原文参考,对于每种指数适用的不同遥感卫星数据进行了详细划分,并对其适用的范围和领域进行了描述,所有指数形成了python代码可供运行,共计近300种各种遥感指数
2024-08-18 22:07:05
1080
原创 中国生态地理区划更新和优化
在机器学习或深度学习研究时,建立的模型用于不同地区或时间的数据进行泛化时,其泛化能力往往较差,所以目前在遥感领域用深度学习或机器学习建模时很多文献都是建立分区的模型,即在不同的地理分区内建立模型,泛化时针对数据所以区域选择不同的模型,尤其是在用GEE等云平台时这方面的文献较多,更多考虑是分区的思路和方法不同,但对于不同专业从事地理方面的来说,其分区大多是基于数据的适用性而缺少地理层面的考虑。
2024-08-17 15:07:38
455
原创 图像特征总结-附带代码
本文从常用的几何特征,颜色特征和纹理特征几个角度来描述图像特征,尤其在遥感领域,在做机器学习分类时这几种特征会经常用到。
2024-08-17 14:00:08
1369
原创 历史标签如何时间迁移?
本篇论文的目的是在同一个区域中,如何利用历史已有的分类数据作为参考,来对其他时间的影像进行分类,已达到不用人为选择样本即可完成分类的目的。
2024-08-04 21:02:54
906
原创 全国一米全要素分类数据集如何得到的?原文赏析!
解读全国1米分类数据集是怎么来的,用什么方法训练得到的,训练数据如何处理以及精度如何评估的,有何借鉴参考意义
2024-07-18 22:55:56
895
原创 遥感之智能优化算法大纲介绍
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。
2024-06-02 17:04:17
1720
原创 基于Sentinel-1遥感数据的水体提取
本文利用SAR遥感图像进行水体信息的提取,相比光学影像,SAR图像不受天气影响,在应急情况下应用最多,针对水体,在发生洪涝时一般天气都是阴雨天,云较多,光学影像质量较差,基本上都是利用SAR影像对受灾范围进行评估,故此本文重点描述SAR影像中的水体提取问题,目前应用较多的是Sentinel-1数据。本文结构:哨兵(Sentinel)系列卫星为欧空局“哥白尼计划”的地球观测卫星系列之一,由两颗卫星组成, 分别为Sentinel-1A和Sentinel-1B, 载有C波段合成孔径雷达, Sentinel-1
2024-05-14 23:40:01
5421
2
原创 浅述遥感技术在农业领域的应用
上述从农作物/耕地范围识别用到的分类技术,以及在范围识别基础上进行的一系列的定量遥感研究所用到的回归技术的关键问题进行了简要描述,在了解其关键问题之后便了解了其处理的关键流程,相关技术的细节问题便可进行针对性的网络查询。在了解遥感在农业领域的技术应用后,还有一个关键的问题需要解决,即遥感数据从何处来?如何获取?是否免费?国外:sentinel-1/2 ,modis,landsat系列,国内:资源环境系列和高分系列数据等。
2024-05-13 00:00:02
1538
原创 遥感之机器学习树模型-错误率降低剪枝
错误率降低剪枝法属于后剪枝算法,由Quinlan提出,是一种简单的剪枝方法。在该方法中,可用的数据被分成两个样例集合:一个训练集用来形成学习到的决策树,一个分离的验证集用来评估这个决策树在后续数据上的精度,确切地说是用来评估修剪决策树的效果。这种方法的动机是:即使学习器可能会被训练集中的随机错误和巧合规律所误导,但验证集合不大可能表现出同样的随机波动,所以验证集可以用来对过拟合训练集中的虚假特征提供防护检验。
2024-05-09 23:20:52
823
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅