- 博客(32)
- 收藏
- 关注
原创 学习如何更好向GPT提问
如今以chatgpt为首的各种语言大模型应运而出,已经逐渐应用到平时的工作和学习中,但就算是使用同一种大模型提问同一个问题也有不同的答案,如何更快更好的获取优质答案是应该关心和学习的重点。
2024-09-01 16:02:55
1696
1
原创 遥感多模态基础大模型汇总-实时更新
遥感多模态基础大模型汇总,包括遥感视觉基础大模型,遥感视觉语言基础大模型,遥感基准数据集等大模型数据集和模型的汇总
2024-08-29 22:02:57
2270
原创 linux(Ubuntu )搭C++ 最新版GDAL完整教程
本文详细的介绍了在linux上如何安装编译c++版本的最新版本的GDAL库,介绍了从安装虚拟机,到安装linux系统,再到逐个配置相关依赖库,以及配置vs code c++环境调用gdal等完整流程
2024-08-25 15:31:04
2304
6
原创 遥感之常用各种指数总结大全
本文对上述各种领域应用的指数做了总结和整理,对于每个指数均附上了相应的原文参考,对于每种指数适用的不同遥感卫星数据进行了详细划分,并对其适用的范围和领域进行了描述,所有指数形成了python代码可供运行,共计近300种各种遥感指数
2024-08-18 22:07:05
795
原创 中国生态地理区划更新和优化
在机器学习或深度学习研究时,建立的模型用于不同地区或时间的数据进行泛化时,其泛化能力往往较差,所以目前在遥感领域用深度学习或机器学习建模时很多文献都是建立分区的模型,即在不同的地理分区内建立模型,泛化时针对数据所以区域选择不同的模型,尤其是在用GEE等云平台时这方面的文献较多,更多考虑是分区的思路和方法不同,但对于不同专业从事地理方面的来说,其分区大多是基于数据的适用性而缺少地理层面的考虑。
2024-08-17 15:07:38
382
原创 图像特征总结-附带代码
本文从常用的几何特征,颜色特征和纹理特征几个角度来描述图像特征,尤其在遥感领域,在做机器学习分类时这几种特征会经常用到。
2024-08-17 14:00:08
1136
原创 历史标签如何时间迁移?
本篇论文的目的是在同一个区域中,如何利用历史已有的分类数据作为参考,来对其他时间的影像进行分类,已达到不用人为选择样本即可完成分类的目的。
2024-08-04 21:02:54
862
原创 全国一米全要素分类数据集如何得到的?原文赏析!
解读全国1米分类数据集是怎么来的,用什么方法训练得到的,训练数据如何处理以及精度如何评估的,有何借鉴参考意义
2024-07-18 22:55:56
771
原创 遥感之智能优化算法大纲介绍
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。
2024-06-02 17:04:17
1597
原创 基于Sentinel-1遥感数据的水体提取
本文利用SAR遥感图像进行水体信息的提取,相比光学影像,SAR图像不受天气影响,在应急情况下应用最多,针对水体,在发生洪涝时一般天气都是阴雨天,云较多,光学影像质量较差,基本上都是利用SAR影像对受灾范围进行评估,故此本文重点描述SAR影像中的水体提取问题,目前应用较多的是Sentinel-1数据。本文结构:哨兵(Sentinel)系列卫星为欧空局“哥白尼计划”的地球观测卫星系列之一,由两颗卫星组成, 分别为Sentinel-1A和Sentinel-1B, 载有C波段合成孔径雷达, Sentinel-1
2024-05-14 23:40:01
4375
2
原创 浅述遥感技术在农业领域的应用
上述从农作物/耕地范围识别用到的分类技术,以及在范围识别基础上进行的一系列的定量遥感研究所用到的回归技术的关键问题进行了简要描述,在了解其关键问题之后便了解了其处理的关键流程,相关技术的细节问题便可进行针对性的网络查询。在了解遥感在农业领域的技术应用后,还有一个关键的问题需要解决,即遥感数据从何处来?如何获取?是否免费?国外:sentinel-1/2 ,modis,landsat系列,国内:资源环境系列和高分系列数据等。
2024-05-13 00:00:02
1264
原创 遥感之机器学习树模型-错误率降低剪枝
错误率降低剪枝法属于后剪枝算法,由Quinlan提出,是一种简单的剪枝方法。在该方法中,可用的数据被分成两个样例集合:一个训练集用来形成学习到的决策树,一个分离的验证集用来评估这个决策树在后续数据上的精度,确切地说是用来评估修剪决策树的效果。这种方法的动机是:即使学习器可能会被训练集中的随机错误和巧合规律所误导,但验证集合不大可能表现出同样的随机波动,所以验证集可以用来对过拟合训练集中的虚假特征提供防护检验。
2024-05-09 23:20:52
738
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人