背景简介
在人工智能领域,大型语言模型(LLM)已成为生成性AI应用的基石。然而,这些模型受限于它们被训练的数据,这可能无法覆盖最新的信息或特定的私有数据。为了克服这些限制,检索增强生成(RAG)技术应运而生,它通过将外部数据源与LLM结合,增强了模型的准确性和可靠性。
理解RAG
RAG通过以下三个步骤增强生成性AI模型:检索、增强和生成。首先,系统会检索与用户查询相关的外部数据。然后,将这些数据作为上下文添加到提示中,最后使用大型语言模型(LLM)生成答案。RAG技术让LLM能够访问最新的数据,从而避免了基于过时知识的答案或胡言乱语,增加了答案的可信度。
幻觉与旧信息问题
在没有RAG的情况下,LLM可能会对它未被训练的数据给出自信但不准确的答案,即所谓的“幻觉”。此外,由于训练成本高昂,LLM很难包含最新的数据更新。RAG技术通过直接将相关数据注入到提示中,绕过了不断微调模型的需要,解决了这些问题。
高级RAG概述
RAG技术的核心在于其三个主要模块:摄入管道、检索管道和生成管道。这些模块共同构成了RAG系统的基础架构,并通过特定的技术细节得以实现。
摄入管道
摄入管道从各种数据源提取原始文档,并进行清理、分块和嵌入处理。最终,这些处理过的数据被加载到向量数据库中,为检索管道提供了数据来源。
检索管道
检索管道负责接收用户的输入,将其嵌入,并在向量数据库中查询与之相似的向量。通过计算用户输入与嵌入数据之间的相似性,检索出最相关的条目。
生成管道
生成管道结合用户的输入、检索到的数据和LLM生成最终答案。为了达到这一目标,通常需要一个或多个提示模板来引导LLM的回答过程。
探索LLM双胞胎的RAG特征管道架构
LLM双胞胎架构是一种特殊的RAG系统设计,它将RAG技术应用于LLM Twin用例。该架构允许系统在不依赖于特定数据集的情况下,有效地利用外部信息源来增强LLM的性能。
实现LLM双胞胎的RAG特性管道
通过实际案例,本文将展示如何基于理论框架实现LLM双胞胎的RAG特性管道。这包括构建提示模板、优化数据摄入流程和调整检索逻辑,以适应具体的应用需求。
总结与启发
RAG技术为生成性AI应用提供了新的可能性,它通过整合外部数据来增强大型语言模型的能力。在本章中,我们学习了RAG的基础知识、其工作原理以及如何在实际应用中实现和优化RAG系统。RAG不仅提高了生成性AI模型的准确性和可靠性,而且为处理最新或私有数据提供了一种有效方法。希望读者能够从本文中获得启发,将RAG技术应用到自己的项目中,构建更加智能和灵活的AI系统。