matlab向量与x正方向的夹角_(5)合同变换、正定矩阵与控制系统V(x)的关系

本文探讨了如何通过合同变换理解李雅普诺夫函数在控制系统稳定性分析中的应用,特别是通过二次型和正定矩阵的概念,展示了如何利用能量表示法和对称矩阵的特性来分析系统的渐近稳定性和Lyapunov稳定性。关键概念包括正定矩阵、合同变换和能量积分形式。
摘要由CSDN通过智能技术生成

dfd92e64d8f0a7b42b8f981b0d1d511f.png

本文主要参考《Applied Nonlinear Control》(Slotine,Li等著)这本书。如有错误疏漏,烦请指出。如需转载,请联系笔者,Dr.shenyue@http://gmail.com。

沈月:(4)La Salle不变集原理与渐近稳定​zhuanlan.zhihu.com

一、为什么合同变换跟控制系统扯上了关系

为了能利用La Salle不变集原理与渐近稳定文中最后一段

拉萨尔不变集原理(La Salle's Invariance Principle)的local version 和global version,加上它的引理,构成不变集原理(Invariant Set Therorems),加上Lyapunov函数与稳定性判别最后一段的 <<局部稳定李雅普诺夫定理(Lyapunov Theorem for Local Stability)和全局稳定李雅普诺夫定理(Lyapunov Theorem for Global Stability)构成了Equilibrium Point Theorems,因为都是针对平衡点得出的稳定性结论!>> 共同构成了传说中的“”李雅普诺夫直接法(Lyapunov's Direct Method)“”。

中提到李雅普诺夫直接法(Lyapunov’s Direct Method)来分析系统稳定性,我们需要找到适当的标量正定函数V(x)。而通常V(x)代表着能量,比如机械系统中的能量:力乘以位移

,力矩乘以角度
;电力系统中的能量:电压乘以电量
;更多不同系统的能量,请参照Wikipedia的词条Energy - Wikipedia。有时候你希望V(x)代表控制系统的跟踪误差能量
或者输入能量
,或者控制与信号系统输入输出的点积
(物理意义请查看Passivity (engineering))等等这些都是向量内积的形式。

因此,实际物理系统不管是机械系统还是电力系统还是控制系统,能量通常是以两个物理量的向量的点积或者叫做内积的形式存在(或者它们内积的积分形式):

点积可以让向量变成了标量,正好Lyapunov Theorem for Local/Global Stability也要求V(x)是个标量,代表了能量。点积的正负性,代表了两个向量的夹角是不是超过90度,正代表两个向量之间的夹角小于90度,负代表两个向量之间的夹角超过90度。点积的大小(magnitude),如果将另外x向量单位化,
还代表了y在x方向上的投影的长度。

而通常我们的控制系统的李雅普诺夫函数(控制目标函数)选取V(x)具有以下形式

,这里的矩阵M是任意的方阵。进一步,我们会发现
永远跟一个对称矩阵
相等,所以干脆每次就认为M是个对称矩阵。
为什么任意矩阵M的二次型
一定等于对称矩阵N的二次型
?
因为 任意n阶方阵M都可以写成一个 对称矩阵
一个 反对称矩阵
之和:
,其中
是对称矩阵,
是反对称矩阵。而任
意一个反对称矩阵的二次型永远等于0,因为
。因此,二次型
永远成立,
控制系统的李雅普诺夫函数(控制目标函数)选取
永远可以假定二次型中的M矩阵为对称矩阵
,可以看成是增加了一个加权矩阵M。那么,M到底对向量x是如何加权的,跟单纯
的本质区别在哪里?有没有一个方式可以让我们显而易见地看出来?

实际的控制系统V(x),如果我们想利用La Salle不变集原理与渐近稳定文中李雅普诺夫直接法(Lyapunov’s Direct Method)来分析系统稳定性,在通常要求V(x)正定。如果

,也就是要求M一般都选为正定实矩阵(复数的V没有很好的物理意义),加上M又是对称的矩阵,而在矩阵分解、相似变换与奇异值分解文中我们写到:
实对称矩阵一定可以对角化(因为一定有n个特征向量,如果没有的话,就是相似于一个约当块,就不对称了,详细请参考矩阵的特征值、特征向量与相似对角化),它的所有特征值都是实数(因为它对称),它可以找到一组特征向量是不仅线性无关,还相互正交。

所以一定可以找到单位正交的U矩阵使得

,这里出现了合同变换
,其中
是M的特征值。M到底对向量x是如何加权的,跟单纯
的本质区别就可以通过对角阵
一眼就看出来了。

于是

。令
,那么我们有
(因为
)。所以进一步我们有
,其中
分别是矩阵M的最小和最大的特征值。于是如果
。于是有了一个正定矩阵的定义:

定义:如果n阶方阵满足

,我们说矩阵M是正定矩阵。

以上定义很好理解,

意味着矩阵M最小的特征值
,我们称之为正定矩阵,因为他所有的特征值都大于零。可见,正定矩阵是针对二次型来定义的。基于此我们引入n阶方阵的大小比较:
。它意味着什么呢?意味着
,意味着
的特征值都大于0。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值