matlab代码的历史版本号,SFM的MATLAB版本代码

% 试着实现 SFM

clear all;clc;close all;

im1 = rgb2gray(imread(‘E:\三维重建\matlab_3D_reconstruct\1.jpg‘));

im2 = rgb2gray(imread(‘E:\三维重建\matlab_3D_reconstruct\2.jpg‘));

im1 = im1‘;

im2 = im2‘;

[im1, des1, locs1] = siftFunc(im1);

[im2, des2, locs2] = siftFunc(im2);

% showkeys(im1, locs1); % 画图时所处尺度和方向信息是需要的,不能丢弃

% showkeys(im2, locs2);

locs1(:,3:4) = []; % 所处尺度,方向信息扔掉

locs2(:,3:4) = []; % 所处尺度,方向信息扔掉

%% 进行匹配

distRatio = 0.50;

% For each descriptor in the first image, select its match to second image.

des2t = des2‘; % Precompute matrix transpose

for i = 1 : size(des1,1)

dotprods = des1(i,:) * des2t; % Computes vector of dot products

[vals,indx] = sort(acos(dotprods)); % Take inverse cosine and sort results

% Check if nearest neighbor has angle less than distRatio times 2nd.

if (vals(1) < distRatio * vals(2))

match(i) = indx(1);

else

match(i) = 0;

end

end

num = sum(match > 0);

disp(strcat(‘总共有‘,num2str(num),‘个匹配点‘));

% locs1里头的每个des都逐一挑出来,和locs2中的所有点计算距离,如果

% 最大距离和次大距离的比值小于distRatio,则互相匹配,匹配的点的编号

% 存在match里,要剔除那些不匹配的点

locs1_index = find(match>0);

locs2_index = match(locs1_index);

clear des2t distRatio dotprods i indx match vals;

locs1 = locs1(locs1_index,:);

des1 = des1(locs1_index,:);

locs2 = locs2(locs2_index,:);

des2 = des2(locs2_index,:);

clear locs1_index locs2_index;

clear des1 des2; % 后面已经不需要描述子的信息了,可以删除

%% 显示匹配

im3 = appendimages(im1,im2);

% Show a figure with lines joining the accepted matches.

figure(‘Position‘, [100 100 size(im3,2) size(im3,1)]);

colormap(‘gray‘);

imagesc(im3);

hold on;

cols1 = size(im1,2);

for i = 1: num

line([locs1(i,2) locs2(i,2)+cols1], ...

[locs1(i,1) locs2(i,1)], ‘Color‘, ‘c‘);

end

clear im3 cols1 i;

pause(5);clc;close all;

%%

% plot(locs1(:,1),locs1(:,2),‘r+‘);axis equal;

% 第一列是640的方向,即图片竖的方向,第二列是480的方向

homo_locs1 = [locs1‘;

ones(1,size(locs1,1))];

homo_locs2 = [locs2‘;

ones(1,size(locs2,1))];

% [F, e1, e2] = fundmatrix(homo_locs1, homo_locs2);

[F, inliers, e1, e2] = ransacfitfundmatrix(homo_locs1, homo_locs2, 0.0001);

% 极点e1,e2 在拍完照片后就已经确定了,是可以算出来的

% ransac是在不考虑极线几何的情况下做的数字式的误差剔除

% 知乎的回答里似乎没有用极线几何剔除错配点,认为ransac已经剔除了错配点

2016/05/29  卡在摄像机自标定了,调用了http://www.peterkovesi.com/matlabfns/index.html里头的一些函数,还调用了一个siftwin32.exe程序

### 回答1: SFM(Structure from Motion)是一种用于从多个图像中重建场景的技术,它通过分析图像中的视觉特征和运动信息来推断场景的三维结构。 在MATLAB中,有一些重建SFM场景的代码可以使用。这些代码通常包含以下步骤: 1. 特征提取:使用一种特征提取算法(如SIFT或SURF)来从图像中提取出关键点和它们的描述子。这些关键点和描述子可以用于后续的匹配和重建。 2. 特征匹配:将不同图像中的特征点进行匹配,以找到它们之间的对应关系。常用的匹配算法有暴力匹配和基于特征描述子的匹配。 3. 相机姿态估计:通过匹配的特征点,计算相机的姿态,即相机的旋转矩阵和平移向量。这可以通过使用RANSAC算法来消除错误匹配点和估计相机姿态。 4. 三维重建:使用相机的姿态和匹配的特征点,通过三角测量的方法计算出三维点的坐标。最后,可以使用Bundle Adjustment算法进行优化,以进一步提高重建结果的准确性。 需要注意的是,SFM是一个复杂的过程,其中每个步骤都可能会出现一些问题和挑战。因此,在使用MATLAB中的SFM重建代码之前,需要对SFM的原理和相关知识有一定的了解,并根据具体的应用场景进行相应的参数调整和优化。 ### 回答2: SFM(Structure from Motion)是一种通过图像序列来重建三维结构和相机姿态的技术。在MATLAB中,可以使用一些工具箱和代码实现SFM重建。 首先,可以使用MATLAB的图像处理工具箱来加载和预处理图像序列。这些图像可以通过摄像机拍摄或从其他来源获得。之后,可以使用特征提取和匹配算法(如SIFT、SURF或ORB)来识别图像中的关键点,并进行特征匹配。 接下来,可以使用基于RANSAC(Random Sample Consensus)的相对定向算法来估计相机之间的视图关系,并计算相机的相对姿态。通过这些步骤,可以获得图像序列中相机之间的相对定位信息。 然后,可以使用绝对定向算法来估计相机的绝对姿态,并通过三角化方法计算相机拍摄点的三维坐标。通过结合图像序列中的所有的特征和姿态信息,可以重建出场景中的三维结构。 最后,可以使用MATLAB中的图形处理工具箱来可视化相机姿态和三维结构。可以使用各种图形可视化技术(如点云、线框渲染等)将重建结果呈现出来,以便进行进一步分析和应用。 总之,使用MATLAB实现SFM重建需要使用图像处理和计算机视觉的相关工具箱,并结合各种特征提取、匹配、相对定向、绝对定向和三角化算法。通过这些步骤,可以从图像序列中重建出场景的三维结构和相机的姿态信息。 ### 回答3: SFM全称为Structure from Motion(结构与运动)是一种计算机视觉和计算机图形学中常用的技术,用于重建三维场景和相机轨迹。在MATLAB中,可以使用SFM重建代码来实现这一过程。 首先,需要加载图像序列。可以使用MATLAB中的图像输入输出函数,将图像序列导入并存储为一个图像集合。 接下来,需要提取图像中的特征点。常用的特征点提取算法有SIFT、SURF等。可以使用MATLAB中的特征提取函数,如`detectSURFFeatures`,来提取特征点。 然后,需要对提取的特征点进行匹配。可以使用特征描述子匹配算法,如FLANN(快速最近邻搜索库)来进行特征点匹配。MATLAB提供了相应的函数,如`matches = matchFeatures(features1, features2)`,用于特征点匹配。 接下来,需要使用RANSAC(随机抽样一致)算法来估计相机姿态,并求解三角化问题。可以使用MATLAB中的RANSAC函数,如`estimateFundamentalMatrix`和`triangulate`来完成此步骤。 最后,通过对重建后的点云进行优化和滤波,可以得到最终的三维重建结果。可以使用MATLAB中的点云优化和滤波函数,如`pcdenoise`来完成此步骤。 总结起来,SFM重建代码使用MATLAB中的函数和工具,通过加载图像序列、提取特征点、匹配特征点、求解相机姿态和三角化问题,并对重建结果进行优化和滤波,来实现三维场景和相机轨迹的重建。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值