python:装饰器与偏函数

装饰器

对于某个函数或类,需要增添大量类似的需求。对于类来说,可以用继承解决,但是继承会增加大量的静态属性,子类会变得越来越臃肿;对于函数来说,每个需求增加一个函数封装过于繁琐。
装饰器的出现解决了这一问题。装饰器本身是一个python函数,它可以让其它函数不发生变动的情况下增加额外的功能,装饰器的返回值是函数对象。
直观来说,装饰器就是为已有代码增添新的功能。
原代码:

def foo():
    print('i am foo')

此时,希望增加打印日志功能
使用函数封装:

def use_logging(func):
	logging.warn("%s is running" % func.__name__)
    func()
    
use_logging(foo)

使用装饰器:

def use_logging(func):
	def warpper(*args,**kwargs):
		loggin.warn("%s is running"% func.__name__)
		return func(*args,**kwargs)
	return warpper

foo = use_logging(foo)
foo()

语法糖@可以帮助我们减少一次函数定义:

def use_logging(func):
	def warpper(*args,**kwargs):
		loggin.warn("%s is running"% func.__name__)
		return func(*args,**kwargs)
	return warpper

@use_logging   # 对要扩展功能的函数使用语法糖@
def foo():
    print('i am foo')

foo()

语法糖@帮我们省去了foo = use_logging(foo)这一句。

带参装饰器
使用装饰器时,可以对装饰器传递参数,如@use_logging(level)

def use_logging(level):
	def decorator(func):
		def wrapper(*args, **kwargs):
			if level == "warn":
				logging.warn("%s is running" % func.__name__)
			return func(*args)
		return wrapper
	return decorator

@use_logging(level="warn")
def foo(name='foo'):
	print("i am %s" % name)

foo()

上面的use_logging是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有参数的闭包。当我 们使用@use_logging(level=“warn”)调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。

类装饰器
相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器还可以依靠类内部的__call__方法,当使用 @ 形式将装饰器附加到函数上时,就会调用此方法。

class Foo(object):
	def __init__(self, func):
	self._func = func
	
	def __call__(self):
		print ('class decorator runing')
		self._func()
		print ('class decorator ending')

@Foo
def bar():
	print ('bar')

bar()

functools.wraps
使用装饰器极大地复用了代码,但是他有一个缺点就是原函数的元信息不见了,比如函数的docstring、__name__、参数列表:

def logged(func):
	def with_logging(*args, **kwargs):
		print func.__name__ + " was called"
		return func(*args, **kwargs)
	return with_logging

@logged
def f(x):
	"""does some math"""
	return x + x * x

该函数完成等价于:

def f(x):
	"""does some math"""
	return x + x * x

f = logged(f)

不难发现,函数f被with_logging取代了,当然它的docstring,__name__就是变成了with_logging函数的信息了。

functools.wraps能解决这一问题。wraps本身也是一个装饰器,它能把原函数的元信息拷贝到装饰器函数中,这使得装饰器函数也有和原函数一样的元信息了。

from functools import wraps

def logged(func):
	@wraps(func)  # add
	def with_logging(*args, **kwargs):
		print func.__name__ + " was called"
		return func(*args, **kwargs)
	return with_logging

@logged
def f(x):
	"""does some math"""
	return x + x * x
	print f.__name__ # prints 'f'print f.__doc__ # prints 'does some math'

内置装饰器
@staticmathod、@classmethod、@property

装饰器的顺序:

@a
@b
@c
def f ():

等效于f = a(b(c(f)))

偏函数

偏函数可以设定函数的默认行为.
例子:通过设定参数来让int()函数默认转换成八进制数字

# 首先导入 functools 模块
import functools

# 定义一个默认转换为二进制的int函数
int2 = functools.partial(int, base=2)
# 调用 
int2('10110101')
181

functools.partial的作用就是将固定一个函数的默认行为,从而简化之后的使用
这个方法可以接收函数、*args、**kwargs这些对象

当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。

参考:

数据中心机房是现代信息技术的核心设施,它承载着企业的重要数据和服务,因此,其基础设计与规划至关重要。在制定这样的方案时,需要考虑的因素繁多,包括但不限于以下几点: 1. **容量规划**:必须根据业务需求预测未来几年的数据处理和存储需求,合理规划机房的规模和设备容量。这涉及到服务器的数量、存储设备的容量以及网络带宽的需求等。 2. **电力供应**:数据中心是能源消耗大户,因此电力供应设计是关键。要考虑不间断电源(UPS)、备用发电机的容量,以及高效节能的电力分配系统,确保电力的稳定供应并降低能耗。 3. **冷却系统**:由于设备密集运行,散热问题不容忽视。合理的空调布局和冷却系统设计可以有效控制机房温度,避免设备过热引发故障。 4. **物理安全**:包括防火、防盗、防震、防潮等措施。需要设计防火分区、安装烟雾探测和自动灭火系统,设置访问控制系统,确保只有授权人员能进入。 5. **网络架构**:规划高速、稳定、冗余的网络架构,考虑使用光纤、以太网等技术,构建层次化网络,保证数据传输的高效性和安全性。 6. **运维管理**:设计易于管理和维护的IT基础设施,例如模块化设计便于扩展,集中监控系统可以实时查看设备状态,及时发现并解决问题。 7. **绿色数据中心**:随着环保意识的提升,绿色数据中心成为趋势。采用节能设备,利用自然冷源,以及优化能源管理策略,实现低能耗和低碳排放。 8. **灾难恢复**:考虑备份和恢复策略,建立异地灾备中心,确保在主数据中心发生故障时,业务能够快速恢复。 9. **法规遵从**:需遵循国家和地区的相关法律法规,如信息安全、数据保护和环境保护等,确保数据中心的合法运营。 10. **扩展性**:设计时应考虑到未来的业务发展和技术进步,保证机房有充足的扩展空间和升级能力。 技术创新在数据中心机房基础设计及规划方案中扮演了重要角色。例如,采用虚拟化技术可以提高硬件资源利用率,软件定义网络(SDN)提供更灵活的网络管理,人工智能和机器学习则有助于优化能源管理和故障预测。 总结来说,一个完整且高效的数据中心机房设计及规划方案,不仅需要满足当前的技术需求和业务目标,还需要具备前瞻性和可持续性,以适应快速变化的IT环境和未来可能的技术革新。同时,也要注重经济效益,平衡投资成本与长期运营成本,实现数据中心的高效、安全和绿色运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值