昇腾910平台安装驱动、固件、CANN toolkit、pytorch

本文详细介绍了在ARM架构的openEuler系统上安装昇腾910平台所需的驱动、固件、CANN工具包以及Python环境(包括Anaconda和PyTorch)的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文使用的昇腾910平台操作系统是openEuler,之前没了解过,不过暂时感觉用起来和centOS差不多。系统架构是ARM,安装包基本都是带aarch64字样,注意和x86_64区别开,别下错了。

安装依赖

cmake

通过yum安装的cmake版本较老,需要源代码安装

wget https://cmake.org/files/v3.21/cmake-3.21.3.tar.gz
tar -zxvf  cmake-3.21.3.tar.gz
cd cmake-3.21.3
./bootstrap
gmake -j16
sudo gmake install

anaconda

使用系统自带的python3也可以,不过anaconda的虚拟环境我用习惯了,感觉很方便。
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 直接找最新的版本。我用的是https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2023.09-0-Linux-aarch64.sh
安装完别忘记把环境变量加入.bashrc文件。

其它依赖

yum install -y gcc gcc-c++ make cmake unzip zlib-devel libffi-devel openssl-devel pciutils net-tools sqlite-devel lapack-devel gcc-gfortran

卸载旧的驱动、固件、CANN toolkit

卸载驱动

cd /usr/local/Ascend/driver/script
bash uninstall.sh

卸载固件

cd /usr/local/Ascend/firmware/script
bash uninstall.sh

卸载nnae

cd /usr/local/Ascend/nnae/6.3.RC1/script
bash uninstall.sh

卸载ascend-toolkit

cd /usr/local/Ascend/ascend-toolkit/
bash cann_uninstall.sh

/ascend-toolkit文件夹下可能安装了多个版本,用下面的命令找一下这些版本脚本位置,都卸载干净:

find . -type f -name "cann_uninstall.sh"

安装驱动和固件

下载链接 https://www.hiascend.com/hardware/firmware-drivers/community?product=4&model=10&cann=7.0.0.alpha003&driver=1.0.21.alpha
按你的平台和安装方式筛选:

在这里插入图片描述
我是下面这两个:
Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run
Ascend-hdk-910-npu-firmware_7.0.0.5.242.run

以root用户登录,将驱动和固件包上传。创建驱动运行用户HwHiAiUser。

groupadd -g 1000 HwHiAiUser
useradd -g HwHiAiUser -u 1000 -d /home/HwHiAiUser -m HwHiAiUser -s /bin/bash

增加可执行权限:

chmod +x Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run
chmod +x Ascend-hdk-910-npu-firmware_7.0.0.5.242.run

安装驱动:

./ Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run --full --install-for-all

出现类似如下回显信息,说明安装成功。
Driver package installed successfully!

还可以通过执行npu-smi info命令检查驱动是否加载成功。

安装固件:

./ Ascend-hdk-910-npu-firmware_7.0.0.5.242.run --full

出现类似如下回显信息,说明安装成功。
Firmware package installed successfully! Reboot now or after driver installation for the installation/upgrade to take effect

驱动和固件安装完成后,重启系统。

reboot

安装CANN

下载安装包:https://www.hiascend.com/developer/download/community/result?module=cann&product=4&model=10
我是这个:
Ascend-cann-toolkit_7.0.0.alpha003_linux-aarch64.run

增加可执行权限:

chmod +x Ascend-cann-toolkit_7.0.0.alpha003_linux-aarch64.run

安装

./Ascend-cann-toolkit_7.0.0.alpha001_linux-x86_64.run --install

安装过程中输入Y同意协议。安装完成后,若显示如下信息,则说明软件安装成功。
[INFO] Ascend-cann-toolkit install success

配置CANN环境变量,将下面这句话加入.bashrc:

source /usr/local/Ascend/ascend-toolkit/set_env.sh

安装pytorch

创建虚拟环境

CANN对python版本有要求,同时需要安装一些python包,可以通过下面的脚本检查是否满足:

cd /usr/local/Ascend/ascend-toolkit/latest/aarch64-linux/bin
bash prereq_check.bash

我选用的版本是python3.8.11,通过下面命令创建虚拟环境:

conda create -n py38 python=3.8.11

激活环境

conda activate py38

安装依赖包

pip install pyyaml
pip install numpy
pip install attrs cloudpickle decorator psutil scipy synr==0.5.0 tornado absl-py
pip install google-cloud google-cloud-vision
protobuf==3.20.0

安装速度慢的话可以加上指定源,比如:

pip install -i https://mirrors.aliyun.com/pypi/simple/ pyyaml

注意protobuf的版本。

安装pytorch及adapter

参考 https://gitee.com/ascend/pytorch
我安装的是2.1.0版本,可以直接通过pip快速安装

pip3 install torch==2.1.0
pip3 install pyyaml
pip3 install setuptools
pip3 install torch-npu==2.1.0rc1

验证:
第一步:
python3 -c "import torch;import torch_npu;print(torch_npu.npu.is_available())"
返回True说明可以成功调用NPU。
第二步:

import torch
import torch_npu

x = torch.randn(2, 2).npu()
y = torch.randn(2, 2).npu()
z = x.mm(y)

print(z)

能正常计算说明安装成功。可能遇到算子构造失败的情况,检查python版本是否符合要求,CANN安装之前是否卸载干净。

### 升腾 AI 框架 CANNPyTorch 的兼容性及使用方法 #### 兼容性分析 CANN(Compute Architecture for Neural Networks)作为昇腾AI的核心软件栈,提供了对主流深度学习框架的良好支持。对于PyTorch这样的开源框架,CANN通过模型迁移工具实现了无缝对接。具体来说,CANN能够将基于PyTorch开发的网络模型快速迁移到昇腾平台上运行[^2]。 此外,在实际应用过程中,CANN不仅限于简单的模型移植,还进一步优化了性能表现。例如,它内置了多种自动化调试功能,如数据异常检测、融合异常检测以及整网数据比对等功能,从而显著提升了开发者在问题排查方面的效率。 #### 使用方法概述 为了实现PyTorchCANN之间的集成,开发者可以利用CANN所提供的AscendCL接口完成底层硬件抽象化处理。这种设计使得应用程序无需关心具体的处理器细节即可顺利完成部署工作[^3]。以下是典型的工作流程: 1. **环境准备** 安装适配好的PyTorch版本,并配置好对应的昇腾驱动程序及相关依赖库。 2. **模型转换** 借助CANN提供的专用工具链,把原始PyTorch定义的模型文件转化为适合昇腾设备执行的形式。 3. **推理/训练任务提交** 利用AscendCL API编写必要的控制逻辑代码来管理资源分配、任务调度等工作环节;同时也可以借助高层封装后的SDK简化操作复杂度。 ```python import torch from ascend import AscendModelLoader, AscendInferSession # 加载已迁移至昇腾格式的模型 model_loader = AscendModelLoader('path/to/migrated_model') session = AscendInferSession(model_loader) # 执行前向传播计算过程 input_tensor = torch.randn(1, 3, 224, 224).to(torch.device('npu')) output = session.run(input_tensor) print(output.shape) ``` 上述脚本展示了如何加载经过预处理之后存储下来的昇腾专属格式模型实例并对其进行预测运算的一个简单例子。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值