关于
Lucas
数立方与二项式数的卷积公式
陈
小
芳
【摘
要】
对于非负整数
l
,
Ll
表示第
l
个
Lucas
数;为二项式系数;对于非负
整数
l
和
k
以及正整数
n
,设
l(k,3,n)
是数列和的卷积,即
l(k,3,n)=
文章证明了
k≥n
时
,
l(k,3,n)=2nL3k+2n+3(-1)k+nLk-n;
当
k
时
,
l(k,3,n)=2nL3k+2n+3Ln-k
成立。
【期刊名称】
西华大学学报(自然科学版)
【年
(
卷
),
期】
2018(037)001
【总页数】
3
【关键词】
Lucas
数
;3
次方幂
;
卷积
;
二项式系数
·基础学科·
1
预备知识与结论
Fibonacci
数列和
Lucas
数列都是重要的数列
,
分别定义
:F0=1,F1=1,
由递推公
式
Fl+1=Fl+Fl-
1(l=1,2,…)确定的数被称为
Fibonacci
数列其中由递推公式
Ll+1=Ll+Ll-
1(l=1,2,…)确定的数被称为
Lucas
数列。其通项为:Ll=αl+βl
(l≥0)。
由于它的重要性
,
众多学者对它进行了研究
[1-17]
。文献
[3-5]
分别讨论了
Lucas
数的标准分解式中素因子
2
、
3
、
7
的指数和下标的关系;文献
[6-7]
讨论了
Lucas
数的模数列是周期数列
,
并给出了
Lucas
数列关于模
Lk
的模数列的周期。
对于这
2
个数列的倒数和的研究成果有
:
文献
[12]
研究了
Fibonacci
数列倒数的
无
限
和
;
文献
[13]
讨
论了
Fibonacci
数
列
倒数
的
有
限
和;
文
献
[14]
证
明
了
Fibonacci
数列偶数项和奇数项倒数的有限和;在文献
[15]
中得出了
Fibonacci
数列两项乘积倒数的有限和;文献
[16]
给出了
Fibonacci
数列的子数列
{F3k}
有