两个常数的卷积为多少_关于Lucas数立方与二项式数的卷积公式

关于

Lucas

数立方与二项式数的卷积公式

【摘

要】

对于非负整数

l

Ll

表示第

l

Lucas

数;为二项式系数;对于非负

整数

l

k

以及正整数

n

,设

l(k,3,n)

是数列和的卷积,即

l(k,3,n)=

文章证明了

k≥n

l(k,3,n)=2nL3k+2n+3(-1)k+nLk-n;

k

l(k,3,n)=2nL3k+2n+3Ln-k

成立。

【期刊名称】

西华大学学报(自然科学版)

【年

(

),

期】

2018(037)001

【总页数】

3

【关键词】

Lucas

;3

次方幂

;

卷积

;

二项式系数

·基础学科·

1

预备知识与结论

Fibonacci

数列和

Lucas

数列都是重要的数列

,

分别定义

:F0=1,F1=1,

由递推公

Fl+1=Fl+Fl-

1(l=1,2,…)确定的数被称为

Fibonacci

数列其中由递推公式

Ll+1=Ll+Ll-

1(l=1,2,…)确定的数被称为

Lucas

数列。其通项为:Ll=αl+βl

(l≥0)。

由于它的重要性

,

众多学者对它进行了研究

[1-17]

。文献

[3-5]

分别讨论了

Lucas

数的标准分解式中素因子

2

3

7

的指数和下标的关系;文献

[6-7]

讨论了

Lucas

数的模数列是周期数列

,

并给出了

Lucas

数列关于模

Lk

的模数列的周期。

对于这

2

个数列的倒数和的研究成果有

:

文献

[12]

研究了

Fibonacci

数列倒数的

;

文献

[13]

论了

Fibonacci

倒数

和;

[14]

Fibonacci

数列偶数项和奇数项倒数的有限和;在文献

[15]

中得出了

Fibonacci

数列两项乘积倒数的有限和;文献

[16]

给出了

Fibonacci

数列的子数列

{F3k}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值