【取模和求余原理】
定义:a = bq + r 且 0 <= |r| < |b|。
题目:给定a和b,要求mod(a,b)和rem(a,b);
分析:对于满足a = bq + r 且 0 <= |r| < |b|条件的数据,如果a不能被b整除,有两对(q,r),其中一对中r为正数(正余数),另一对中r为负数(负余数)。
结果:取模的定义有很多种,不同语言的取模定义可能不一样,最常见的是:
取模:q更趋近无穷小(负无穷)时的r,即mod(a,b);
求余:q更趋近0时的r,即rem(a,b);
(取余,遵循尽可能让商向0靠近的原则;取模,遵循尽可能让商向负无穷靠近的原则;)
【举例】
例子1:mod(7,3)=1,rem(7,3)=1
候选组1:(q1,r1)=(2,1); 7=2*3+1
候选组2:(q2,r2)=(3,-2); 7=3*3+(-2)
取模:因为q1比q2更加趋近于负无穷,所以取(q1,r1)=(2,1),mod(7,3)=1;
求余:因为q1比q2更加趋近于0,所以取(q1,r1)=(2,1),rem(7,3)=1;
例子2:mod(7,-3)=-2,rem(7,-3)=1
候选组1:(q1,r1)=(-2,1); 7=(-2)*(-3)+1
候选组2:(q2,r2)=(-3,-2); 7=(-3)*(-3)+(-2)
取模:因为q2比q1更加趋近于负无穷,所以取(q2,r2)=(-3,-2),mod(7,-3)=-2;
求余:因为q1比q2更加趋近于0,所以取(q1,r1)=(-2,1),rem(7,3)=1;
例子3:mod(-7,3)=2,rem(-7,3)=-1
候选组1:(q1,r1)=(-2,-1); -7=(-2)*3+(-1);
候选组2:(q2,r2)=(-3,2); -7=(-3)*3+2;
取模:因为q2比q1更加趋近于负无穷,所以取(q2,r2)=(-3,2),mod(7,-3)=2;
求余:因为q1比q2更加趋近于0,所以取(q1,r1)=(-2,-1),rem(7,-3)=-1;
例子4:mod(-7,-3)=-1,rem(-7,-3)=-1
候选组1:(q1,r1)=(2,-1); -7=2*(-3)+(-1)
候选组2:(q2,r2)=(3,2); -7=3*(-3)+2
取模:因为q1比q2更加趋近于负无穷,所以取(q1,r1)=(2,-1),mod(7,-3)=-1
求余:因为q1比q2更加趋近于0,所以取(q1,r1)=(2,-1),rem(7,-3)=-1
【更多】1、其他的取模运算,例如r必须和a负号相同等等,原理类似,根据条件取模时对候选组进行选择,因此不再展开。2、取模在灰度方案和abtest中经常用到(对随机算法要求不高)。翻了下百度计算器,对了下答案,米问题,交卷~;
作者:小婷子
链接:https://www.zhihu.com/question/30526656/answer/160437482
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。