echart 图谱_【数据挖掘研究新动向】课程知识图谱系统上线啦

本文介绍了使用echarts构建的知识图谱系统,该系统旨在提升数据挖掘课程的查询效率和用户体验。系统通过知识图谱展示课程间的前后关系,结合Java实现数据交互,并利用H5提供友好的交互界面。分词和特征提取技术用于处理课程大纲,以确定课程的前后关系并建立数据库。
摘要由CSDN通过智能技术生成

点击蓝字

关注我们

课程知识图谱系统

什么是知识图谱?

知识图谱在国内属于一个比较新兴的概念,国内目前paper都比较少,应用方主要集中在BAT这类手握海量数据的企业,这个概念是google在2012年提出的,当时主要是为了将传统的keyword-base搜索模型向基于语义的搜索升级。知识图谱可以用来更好的查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。

课程知识图谱系统当前的教学体系中,教学大纲内容冗杂且繁琐,不能直观的了解课程与课程之间的关系。当前的解决方案主要是通过人工阅读并提取大纲内容获得课程间的关系,这不仅造成了教育资源的一种浪费,同时也存在着人工获取误差问题。为了解决上述问题而开发的课程知识图谱系统。利用知识图谱对数据的超强的描述能力来实现对课程关系之间的处理,实现清晰直观的展示软件工程专业各个课程之间的前后续关系。同时展示对学生编码训练、软件技术、软件测试、软件产品设计、算法分析、数据分析、数据挖掘、移动开发等一系列能力的培养课程安排及其前后续关系。同时通过知识图谱来更好的查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。目前团队主要有尹洁,唐孟轩、王如忆和向春淼四名成员。

成员分工

尹洁·

项目负责人:

负责整个项目人员工作安排,使用echarts来实现知识图谱的展示,同时实现课程前后续关系,课程结点位置、权重、类型,搜索功能的处理。并通过Java实现前后台数据交互,实现知识图谱构建的相关算法。

向春淼·

前端开发+数据分词:

利用H5开发原始界面,为用户提供了一个友好的交互环境。并且负责后期的界面优化以及功能拓展;同时还通过基于正向最大匹配改进算法与互信息新词识别的中文分词方案来实现分词。

唐孟轩 ·

数据库设计:

通过分词、特征提取等技术对软件工程专业课程大纲的进行处理,确定课程的前序后继关系,提取数据建立数据库。

王如忆 ·

特征提取:

通过CountVectorizer来实现文本的特征提取。实现对于大纲中课程特征的提取和分析。

系统展示

860d4c92ff5c1b6766671bd06c4829a9.png

该界面主要通过echart实现,展示了课程间的关系,其中节点的半径大小由课程学时的长短决定,点击节点显示课程间的前后关系。 bdf1c4682a00a317df6451fff15e5e77.png该界面主要实现软件工程专业 能力的培养课程 安排及其相关课程的前后续关系的展示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值