矩阵乘法_线性代数复习(三)矩阵乘法

babcbd842b47b0acaf3ce95c01f29cc1.png

矩阵乘法的概念在之前两篇文上中已经零星提起,现在完整地概括

矩阵乘法的前提:

A必须是n列矩阵,而B必须是n行矩阵。
  1. 单个元素的视角

下图其实已经给出了非常直觉的解释。这里就不详细展开了,相信高中同学都能做题6得起飞。具体的计算,就是把A划成行,把B划成列,然后逐个求点积。

ead6bb5a8ae88a4032f9f5a63d1b3f75.png
Fig. 1 课件截图

c522603d7f4e572b4af90e22480e0cd0.png
Fig. 2

2. 列视角与行视角

这两种理解方法非常类似,因此归纳在一起。

还记得

的方程吗?矩阵乘法就是一个多次重复“矩阵
列向量
列向量”的过程。

同理,对于“行向量

矩阵
行向量”,也是一个重复的过程。

这个链接是之前的文章,最后一部分讲述了列向量

和行向量
的乘法。
Review Maths​zhuanlan.zhihu.com
06d41466ca332b1b7bfee69e7d60ad2d.png

3. 列向量

行向量视角

这个方法是利用分块矩阵和行向量乘以列向量的特性得到的。先看例子:

这么做的理由是我们把A和B看成分块矩阵

并且列向量
行向量得到的必然是秩
的矩阵。

Remark: 矩阵乘法的最终目的就是得到结果。对于人类计算来说当然是1方法最直接,而从理解上2和3都是不错的,但是限于人脑“多线程”能力较弱,所以计算上没什么优势。但第4种的分割方法和1是相反的!这可能造成理解上的困难。

Reference:

Strang, G. (2006).Linear algebra and its applications(4th ed.). Belmont, CA: Thomson, Brooks/Cole.

麻省理工公开课 线性代数 MIT 18.06 Linear Algebra, Spring 2005 中英双语字幕_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili​www.bilibili.com
3de3b1f09d91b04589702549e2a682a7.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
矩阵乘法是计算机科学中非常基础的一种算法,它在图像处理、人工智能等领域都有广泛的应用。而分治法是一种常见的算法思想,它可以将一个问题分成多个子问题,再将子问题的结果合并起来得到最终结果。本文将介绍如何使用分治法实现矩阵乘法。 首先,我们来回顾一下矩阵乘法的定义。对于矩阵A和B,它们的乘积C的第i行第j列的元素可以表示为: C[i][j] = sum(A[i][k] * B[k][j]), k = 1,2,...,n 其中n为矩阵的大小。 接下来,我们将使用分治法来实现矩阵乘法。具体思路如下: 1.将矩阵A和B分别划分成4个子矩阵,即A11、A12、A21、A22和B11、B12、B21、B22。 2.递归地计算子矩阵的乘积,得到C11、C12、C21和C22。 3.将C11、C12、C21和C22合并成一个大的矩阵C。 下面是Python代码实现: ```python def matrix_multiply(A, B): # 判断矩阵大小是否相等 assert len(A[0]) == len(B) # 矩阵大小为1x1的情况 if len(A) == 1 and len(A[0]) == 1 and len(B) == 1 and len(B[0]) == 1: return [[A[0][0] * B[0][0]]] # 将矩阵A和B分成4个子矩阵 A11, A12, A21, A22 = split_matrix(A) B11, B12, B21, B22 = split_matrix(B) # 递归地计算子矩阵的乘积 C11 = matrix_add(matrix_multiply(A11, B11), matrix_multiply(A12, B21)) C12 = matrix_add(matrix_multiply(A11, B12), matrix_multiply(A12, B22)) C21 = matrix_add(matrix_multiply(A21, B11), matrix_multiply(A22, B21)) C22 = matrix_add(matrix_multiply(A21, B12), matrix_multiply(A22, B22)) # 合并C11、C12、C21和C22成一个大的矩阵C return merge_matrix(C11, C12, C21, C22) def split_matrix(matrix): # 将矩阵按行、列均分为两个子矩阵 n = len(matrix) m = len(matrix[0]) A = [[matrix[i][j] for j in range(m // 2)] for i in range(n // 2)] B = [[matrix[i][j] for j in range(m // 2, m)] for i in range(n // 2)] C = [[matrix[i][j] for j in range(m // 2)] for i in range(n // 2, n)] D = [[matrix[i][j] for j in range(m // 2, m)] for i in range(n // 2, n)] return A, B, C, D def merge_matrix(A, B, C, D): # 将四个子矩阵合并成一个大的矩阵 n = len(A) + len(C) m = len(A[0]) + len(B[0]) matrix = [[0] * m for i in range(n)] for i in range(len(A)): for j in range(len(A[0])): matrix[i][j] = A[i][j] for i in range(len(C)): for j in range(len(C[0])): matrix[i + len(A)][j] = C[i][j] for i in range(len(B)): for j in range(len(B[0])): matrix[i][j + len(A[0])] = B[i][j] for i in range(len(D)): for j in range(len(D[0])): matrix[i + len(A)][j + len(A[0])] = D[i][j] return matrix def matrix_add(A, B): # 矩阵加法 n = len(A) m = len(A[0]) matrix = [[0] * m for i in range(n)] for i in range(n): for j in range(m): matrix[i][j] = A[i][j] + B[i][j] return matrix ``` 可以使用以下代码进行测试: ```python A = [[1, 2], [3, 4]] B = [[5, 6], [7, 8]] C = matrix_multiply(A, B) print(C) # [[19, 22], [43, 50]] ``` 上面的代码实现了分治法实现矩阵乘法的基本思路,但是它的时间复杂度依然是O(n^3),因为我们在合并子问题的结果时需要遍历整个矩阵。实际上,我们可以在递归计算子问题时将子矩阵的结果直接传递到合并函数中,这样可以避免重复计算,从而将时间复杂度优化到O(n^2.81)。感兴趣的读者可以自行了解 Strassen 算法的实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值