linux 科学绘图软件,在Linux中使用matplotlib进行科学画图

本文介绍了如何在Linux环境下利用Python的matplotlib库进行高效、自动化的科学绘图。matplotlib是一个开源的科学测绘包,支持多种图表类型如柱状图、饼状图等,并能与Numpy集成,提供丰富的自定义选项和自动化能力。通过实例展示了创建离散图、柱状图和饼状图的方法,并讲解了安装和使用matplotlib的步骤。

如果你想要在Linxu中获得一个高效、自动化、高质量的科学画图的解决方案,应该考虑尝试下matplotlib库。Matplotlib是基于Python的开源科学测绘包,基于python软件基金会许可证发布。大量的文档和例子、集成了Python和Numpy科学计算包、以及自动化能力,是作为Linux环境中进行科学画图的可靠选择的几个原因。这个教程将提供几个用matplotlib画图的例子。

特性

支持众多的图表类型,如:bar,box,contour,histogram,scatter,line plots....

基于python的语法

集成Numpy科学计算包

数据源可以是 python 的列表、键值对和数组

可定制的图表格式(坐标轴缩放、标签位置及标签内容等)

可定制文本(字体,大小,位置...)

支持TeX格式(等式,符号,希腊字体...)

与IPython相兼容(允许在 python shell 中与图表交互)

自动化(使用 Python 循环创建图表)

用Python 的循环迭代生成图片

保存所绘图片格式为图片文件,如:png,pdf,ps,eps,svg等

基于Python语法的matplotlib是其许多特性和高效工作流的基础。世面上有许多用于绘制高质量图的科学绘图包,但是这些包允许你直接在你的Python代码中去使用吗?除此以外,这些包允许你创建可以保存为图片文件的图片吗?Matplotlib允许你完成所有的这些任务。从而你可以节省时间,使用它你能够花更少的时间创建更多的图片。

安装

安装Python和Numpy包是使用Matplotlib的前提,安装Numpy的指引请见该链接。

可以通过如下命令在Debian或Ubuntu中安装Matplotlib:

$ sudo apt-getinstall python-matplotlib

在Fedora或CentOS/RHEL环境则可用如下命令:

$ sudo yum install python-matplotlib

Matplotlib 例子

本教程会提供几个绘图例子演示如何使用matplotlib:

离散图和线性图

柱状图

饼状图

在这些例子中我们将用Python脚本来执行Mapplotlib命令。注意numpy和matplotlib模块需要通过import命令在脚本中进行导入。

np为nuupy模块的命名空间引用,plt为matplotlib.pyplot的命名空间引用:

importnumpyasnp

importmatplotlib.pyplotasplt

例1:离散和线性图

第一个脚本,script1.py 完成如下任务:

创建3个数据集(xData,yData1和yData2)

创建一个宽8英寸、高6英寸的图(赋值1)

设置图画的标题、x轴标签、y轴标签(字号均为14)

绘制第一个数据集:yData1为xData数据集的函数,用圆点标识的离散蓝线,标识为"y1 data"

绘制第二个数据集:yData2为xData数据集的函数,采用红实线,标识为"y2 data"

把图例放置在图的左上角

保存图片为PNG格式文件

script1.py的内容如下:

importnumpyasnp

importmatplotlib.pyplotasplt

xData=np.arange(0,10,1)

yData1=xData.__pow__(2.0)

yData2=np.arange(15,61,5)

plt.figure(num=1,figsize=(8,6))

plt.title('Plot 1',size=14)

plt.xlabel('x-axis',size=14)

plt.ylabel('y-axis',size=14)

plt.plot(xData,yData1,color='b',linestyle='--',marker='o',label='y1 data')

plt.plot(xData,yData2,color='r',linestyle='-',label='y2 data')

plt.legend(loc='upper left')

plt.savefig('images/plot1.png',format='png')

所画之图如下:

4f17cba68c7103549ebb500d6d582511.png

例2:柱状图

第二个脚本,script2.py 完成如下任务:

创建一个包含1000个随机样本的正态分布数据集。

创建一个宽8英寸、高6英寸的图(赋值1)

设置图的标题、x轴标签、y轴标签(字号均为14)

用samples这个数据集画一个40个柱状,边从-10到10的柱状图

添加文本,用TeX格式显示希腊字母mu和sigma(字号为16)

保存图片为PNG格式。

script2.py代码如下:

importnumpyasnp

importmatplotlib.pyplotasplt

mu=0.0

sigma=2.0

samples=np.random.normal(loc=mu,scale=sigma,size=1000)

plt.figure(num=1,figsize=(8,6))

plt.title('Plot 2',size=14)

plt.xlabel('value',size=14)

plt.ylabel('counts',size=14)

plt.hist(samples,bins=40,range=(-10,10))

plt.text(-9,100,r'$\mu$ = 0.0, $\sigma$ = 2.0',size=16)

plt.savefig('images/plot2.png',format='png')

结果见如下链接:

3ad0e63481cbc55c1f4bd257dc4ff2bd.png

例3:饼状图

第三个脚本,script3.py 完成如下任务:

创建一个包含5个整数的列表

创建一个宽6英寸、高6英寸的图(赋值1)

添加一个长宽比为1的轴图

设置图的标题(字号为14)

用data列表画一个包含标签的饼状图

保存图为PNG格式

脚本script3.py的代码如下:

importnumpyasnp

importmatplotlib.pyplotasplt

data=[33,25,20,12,10]

plt.figure(num=1,figsize=(6,6))

plt.axes(aspect=1)

plt.title('Plot 3',size=14)

plt.pie(data,labels=('Group 1','Group 2','Group 3','Group 4','Group 5'))

plt.savefig('images/plot3.png',format='png')

结果如下链接所示:

38bbc7e49506e49b706820465dd3d9b7.png

总结

这个教程提供了几个用matplotlib科学画图包进行画图的例子,Matplotlib是在Linux环境中用于解决科学画图的绝佳方案,表现在其无缝地和Python、Numpy连接、自动化能力,和提供多种自定义的高质量的画图产品。matplotlib包的文档和例子详见这里。

0b1331709591d260c1c78e86d0c51c18.png

Linux 命令行环境下使用 `matplotlib` 绘图时,由于大多数服务器环境没有图形界面(即无 GUI),默认情况下无法直接使用 `plt.show()` 来显示图像[^1]。但可以通过以下几种方式查看或保存图像内容: ### 1. 使用非交互式后端保存图像到文件 当没有图形界面可用时,可以将 `matplotlib` 的绘图后端设置为 `Agg`,这是一个基于 Python 的图像渲染模块,专门用于生成图像文件而不依赖 GUI 环境[^1]。示例代码如下: ```python import matplotlib matplotlib.use('Agg') # 设置为非交互式后端 import matplotlib.pyplot as plt import numpy as np x = np.array([0, 6]) y = np.array([0, 100]) plt.plot(x, y) plt.savefig("output.png") # 将图像保存为 PNG 文件 plt.close() ``` 该方法适用于批量处理数据并生成图像文件的场景。 --- ### 2. 启用 X11 转发以实现远程显示 如果希望在本地机器上显示图像,而使用的是通过 SSH 连接的 Linux 服务器,则可以启用 X11 转发功能。具体操作如下: - 在 SSH 客户端连接服务器时添加 `-X` 或 `-Y` 参数,例如: ```bash ssh -X user@remote_server ``` - 确保服务器和客户端都安装了 X11 相关组件(如 `xauth` 和 X server)。 - 在 Python 代码中使用默认的交互式后端(如 `TkAgg`、`GTK3Agg` 等)并调用 `plt.show()` 即可将图像窗口转发到本地桌面显示[^4]。 示例代码: ```python import matplotlib.pyplot as plt import numpy as np x = np.array([0, 6]) y = np.array([0, 100]) plt.plot(x, y) plt.show() # 图像将在本地计算机的图形界面中显示 ``` --- ### 3. 使用 Jupyter Notebook 或 IPython 的 inline 显示 如果是在支持内联显示的环境中(如 Jupyter Notebook 或 IPython 控制台),可以直接在终端中运行代码,并通过 `%matplotlib inline` 指令使图像嵌入到输出区域中显示。 ```python %matplotlib inline import matplotlib.pyplot as plt import numpy as np x = np.array([0, 6]) y = np.array([0, 100]) plt.plot(x, y) plt.show() ``` 这种方式适合交互式调试和快速查看结果。 --- ### 4. 配置 PyCharm 远程开发以支持图像显示 对于使用 PyCharm 进行远程开发的用户,可通过配置 SSH 解释器与 X11 转发联动,使得图像能够在本地计算机上正常显示。关键步骤包括: - 确保 SSH 配置中启用了 X11 forwarding。 - 在 PyCharm 的部署设置中正确配置解释器路径和远程主机信息。 - 测试是否可以通过远程执行 `xeyes` 或类似命令来验证 X11 转发是否成功[^4]。 一旦配置完成,即可在 PyCharm 中运行包含 `plt.show()` 的脚本,图像将自动弹出在本地桌面。 --- ### 总结 根据实际需求选择合适的方法: - 若只需生成图像文件且无需即时查看,推荐使用 `Agg` 后端进行非交互式绘图。 - 若需在本地查看图像并具备 X11 支持,可启用 SSH 的 X11 转发功能。 - 对于交互式开发环境(如 Jupyter Notebook),使用 `%matplotlib inline` 是最便捷的方式。 - 使用 PyCharm 开发时,合理配置 SSH 与 X11 可实现远程绘图并本地显示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值