计算机程序编程助理,计算机程序编程课程设计-马尔可夫链.doc

计算机程序编程课程设计(2009-2010-3)

题 目:马尔可夫链算法生成随机可读的文本

学 号:

姓 名:

计算机程序编程课程设计报告

引言

马尔可夫链,因安德烈·马尔可夫得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,只有当前的状态用来预测将来,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。

在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做过渡,与不同的状态改变相关的概率叫做过渡概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。

物理马尔可夫链通常用来建模排队理论和统计学中的建模,还可作为信号模型用于熵编码技术,如算术编码(著名的LZMA数据压缩算法就使用了马尔可夫链与类似于算术编码的区间编码)。马尔可夫链也有众多的生物学应用,特别是人口过程,可以帮助模拟生物人口过程的建模。隐蔽马尔可夫模型还被用于生物信息学,用以编码区域或基因预测。   马尔可夫链最近的应用是在地理统计学(geostatistics)中。其中,马尔可夫链用在基于观察数据的二到三维离散变量的随机模拟。这一应用类似于“克里金”地理统计学(Kriging geostatistics),被称为是“马尔可夫链地理统计学”。这一马尔可夫链地理统计学方法仍在发展过程中。

马尔可夫链模型的性质:马尔可夫链是由一个条件分布来表示的P(Xn + 1 | Xn) 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:同样:   这些式子可以通过乘以转移概率并求k?1次积分来一般化到任意的将来时间n+k。边际分布P(Xn)是在时间为n时的状态的分布。初始分布为P(X0)。该过程的变化可以用以下的一个时间步幅来描述:这是Frobenius-Perron equation的一个版本。这时可能存在一个或多个状态分布π满足:其中Y只是为了便于对变量积分的一个名义。这样的分布π被称作是“平稳分布”(Stationary Distribution)或者“稳态分布”(Steady-state Distribution)。一个平稳分布是一个对应于特征根为1的条件分布函数的特征方程。平稳分布是否存在,以及如果存在是否唯一,这是由过程的特定性质决定的。“不可约”是指每一个状态都可来自任意的其它状态。当存在至少一个状态经过一个固定的时间段后连续返回,则这个过程被称为是“周期的”。

离散状态空间中的马尔可夫链模型:如果状态空间是有限的,则转移概率分布可以表示为一个具有(i,j)元素的矩阵,称之为“转移矩阵”:Pij = P(Xn + 1 = i | Xn = j)  对于一个离散状态空间,k步转移概率的积分即为求和,可以对转移矩阵求k次幂来求得。就是说,如果是一步转移矩阵,就是k步转移后的转移矩阵。 平稳分布是一个满足以下方程的向量:在此情况下,稳态分布π*是一个对应于特征根为1的、该转移矩阵的特征向量。如果转移矩阵不可约,并且是非周期的,则收敛到一个每一列都是不同的平稳分布π*,并且独立于初始分布π。这是由Perron-Frobenius theorem所指出的。正的转移矩阵(即矩阵的每一个元素都是正的)是不可约和非周期的。矩阵被称为是一个随机矩阵,当且仅当这是某个马尔可夫链中转移概率的矩阵。注意:在上面的定式化中,元素(i,j)是由j转移到i的概率。有时候一个由元素(i,j)给出的等价的定式化等于由i转移到j的概率。在此情况下,转移矩阵仅是这里所给出的转移矩阵的转置。另外,一个系统的平稳分布是由该转移矩阵的左特征向量给出的,而不是右特征向量。转移概率独立于过去的特殊况为熟知的Bernoulli scheme。仅有两个可能状态的Bernoulli scheme被熟知为贝努利过程。

现实应用:马尔可夫链通常用来建模排队理论和统计学中的建模,还可作为信号模型用于熵编码技术,如算法编码。马尔可夫链也有众多的生物学应用,特别是人口过程,可以帮助模拟生物人口过程的建模。隐蔽马尔可夫模型还被用于生物信息学,用以编码区域或基因预测。 马尔可夫链最近的应用是在地理统计学(geostatistics)中。其中,马尔

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,导入所需的库:numpy、pandas、matplotlib、math。代码如下: ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt import math ``` 1. 对数据进行预处理 读取数据,并将数据按照时间顺序进行排序。代码如下: ```python df = pd.read_csv('data.csv', delimiter='\t') df = df.sort_values(by=['date']) ``` 对于灰色马尔科夫链模型,需要对数据进行一次累加生成新的序列。代码如下: ```python df['cumulative'] = df['close'].cumsum() ``` 2. 对数据进行灰色马尔科夫链建模 根据灰色马尔科夫链模型,需要首先将原始数据序列转化为矩阵。代码如下: ```python n = len(df) X0 = np.array(df['cumulative'][:-1]) X1 = np.array(df['cumulative'][1:]) X1 = X1.reshape((n-1, 1)) B = np.ones((n-1, 2)) B[:, 1] = -1 * np.arange(1, n) Y = df['close'][1:].values ``` 接着,可以使用最小二乘法求解出参数a和u,并计算出残差序列e。代码如下: ```python a, u = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Y) e = Y - a*X1[:, 0] - u ``` 3. 对模型预测的结果进行检验 首先,可以绘制出原始数据序列和预测序列的图像。代码如下: ```python Y_predict = np.zeros(n-1) Y_predict[0] = df['cumulative'][0] for i in range(1, n-1): Y_predict[i] = (df['cumulative'][0] - u/a) * math.exp(-a*i) + u/a df['predict'] = np.concatenate(([df['close'][0]], np.diff(Y_predict))) plt.plot(df['date'], df['close'], 'b-', label='Original') plt.plot(df['date'], df['predict'], 'r-', label='Predict') plt.legend(loc='upper left') plt.xticks(rotation=45) plt.show() ``` 接着,可以计算出残差序列的均值、标准差和相关系数,并绘制出残差序列的图像。代码如下: ```python mean_e = np.mean(e) std_e = np.std(e) corrcoef_e = np.corrcoef(e[:-1], e[1:])[0][1] df['e'] = np.concatenate(([0], e)) plt.plot(df['date'], df['e'], 'b-') plt.xticks(rotation=45) plt.show() ``` 最后,可以使用后验差检验来检验预测精度。代码如下: ```python delta = np.abs(e) / Y[1:] C = delta.mean() P = (np.sum(delta) - delta.max()) / np.sum(delta) Q = 1 - P print('C: %.4f' % C) print('P: %.4f' % P) print('Q: %.4f' % Q) ``` 4. 划分系统状态,检验所得序列是否具有马氏性 首先,需要将残差序列划分为两个状态,即正向和负向。代码如下: ```python e_mean = np.mean(e) df['state'] = df['e'].apply(lambda x: 1 if x >= e_mean else -1) ``` 接着,可以计算出状态转移概率矩阵,并绘制出状态转移图。代码如下: ```python P11 = np.sum(df['state'][1:] == 1) / (n-2) P12 = 1 - P11 P21 = 1 - P11 P22 = np.sum(df['state'][1:] == -1) / (n-2) P = np.array([[P11, P12], [P21, P22]]) print('P: ') print(P) plt.figure(figsize=(4, 4)) plt.imshow(P, cmap='Blues') plt.xticks([0, 1], ['1', '-1']) plt.yticks([0, 1], ['1', '-1']) for i in range(2): for j in range(2): plt.text(j, i, '%.2f' % P[i][j], ha='center', va='center', fontsize=18) plt.show() ``` 5. 计算灰色马尔可夫链理论下的状态转移概率矩阵 根据灰色马尔科夫链模型,可以计算出灰色马尔可夫链理论下的状态转移概率矩阵。代码如下: ```python alpha = 0.5 P_predict = np.zeros((2, 2)) P_predict[0][0] = alpha + (1-alpha)*P[0][0] P_predict[0][1] = (1-alpha)*P[0][1] P_predict[1][0] = (1-alpha)*P[1][0] P_predict[1][1] = alpha + (1-alpha)*P[1][1] print('P_predict: ') print(P_predict) ``` 6. 对灰色马尔科夫链模型进行预测 根据灰色马尔科夫链模型,可以预测出未来的状态概率分布和预测值。代码如下: ```python state = np.zeros(n) state[0] = df['state'][0] for i in range(1, n): state[i] = np.random.choice([-1, 1], p=P_predict[int(state[i-1] == 1)]) df['state_predict'] = state df['predict_gm'] = 0 for i in range(1, n): if df['state_predict'][i] == 1: df['predict_gm'][i] = df['predict_gm'][i-1] + abs(df['predict'][i]) else: df['predict_gm'][i] = df['predict_gm'][i-1] - abs(df['predict'][i]) plt.plot(df['date'], df['predict_gm'], 'r-', label='Predict') plt.legend(loc='upper left') plt.xticks(rotation=45) plt.show() ``` 7. 用加权灰色马尔科夫链模型进行建模 根据加权灰色马尔科夫链模型,需要首先确定权重的选择和调整。这里使用指数平均法来确定权重,并设置初始权重为0.5。代码如下: ```python alpha = 0.5 w = np.zeros(n) w[0] = 0.5 for i in range(1, n): w[i] = alpha * w[i-1] + (1-alpha) * (abs(df['predict'][i]) / abs(df['e'][i])) df['w'] = w ``` 接着,根据加权灰色马尔科夫链模型,需要对数据进行二次累加。代码如下: ```python df['cumulative2'] = df['cumulative'].cumsum() ``` 接着,可以将加权灰色马尔科夫链模型转化为灰色马尔科夫链模型,并使用最小二乘法求解出参数a和u,并计算出残差序列e。代码如下: ```python X0_w = np.array(df['cumulative2'][:-1]) X1_w = np.array(df['cumulative2'][1:]) X1_w = X1_w.reshape((n-1, 1)) Y_w = df['close'][1:].values B_w = np.ones((n-1, 2)) B_w[:, 1] = -1 * np.arange(1, n) W = np.diag(df['w'][1:]) a_w, u_w = np.dot(np.dot(np.dot(np.linalg.inv(np.dot(np.dot(B_w.T, W), B_w)), B_w.T), W), Y_w) e_w = Y_w - a_w*X1_w[:, 0] - u_w ``` 8. 计算加权灰色马尔可夫链理论下的状态转移概率矩阵,对加权灰色马尔科夫链模型进行预测,得到未来的预测值 根据加权灰色马尔科夫链模型,可以计算出加权灰色马尔可夫链理论下的状态转移概率矩阵,并预测出未来的预测值。代码如下: ```python alpha_w = 0.5 P_predict_w = np.zeros((2, 2)) P_predict_w[0][0] = alpha_w + (1-alpha_w)*P[0][0] P_predict_w[0][1] = (1-alpha_w)*P[0][1] P_predict_w[1][0] = (1-alpha_w)*P[1][0] P_predict_w[1][1] = alpha_w + (1-alpha_w)*P[1][1] print('P_predict_w: ') print(P_predict_w) state_w = np.zeros(n) state_w[0] = df['state'][0] for i in range(1, n): state_w[i] = np.random.choice([-1, 1], p=P_predict_w[int(state_w[i-1] == 1)]) df['state_predict_w'] = state_w df['predict_gm_w'] = 0 for i in range(1, n): if df['state_predict_w'][i] == 1: df['predict_gm_w'][i] = df['predict_gm_w'][i-1] + abs(df['predict'][i]) else: df['predict_gm_w'][i] = df['predict_gm_w'][i-1] - abs(df['predict'][i]) plt.plot(df['date'], df['predict_gm_w'], 'r-', label='Predict') plt.legend(loc='upper left') plt.xticks(rotation=45) plt.show() ``` 9. 可视化以上所有的预测结果 绘制出原始数据序列、灰色马尔科夫链模型预测序列和加权灰色马尔科夫链模型预测序列的图像。代码如下: ```python plt.plot(df['date'], df['close'], 'b-', label='Original') plt.plot(df['date'], df['predict_gm'], 'r-', label='Predict GM') plt.plot(df['date'], df['predict_gm_w'], 'g-', label='Predict WGM') plt.legend(loc='upper left') plt.xticks(rotation=45) plt.show() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值