LSTM模型在股票新闻资讯数据情感分析中的应用

模型选择:

之所以选择LSTM模型,有以下好处,一方面自己总结,一方面也是参考一般经验,具体如下,供大家参考。

LSTM(长短期记忆)模型特别适合处理序列数据的任务,例如时间序列分析、语音识别和自然语言处理(NLP),包括情感分析。以下是 LSTM 模型常被使用的一些原因: 1、处理长依赖关系:LSTM 被设计用来记住长时间的信息,这对于理解序列中的上下文至关重要。在情感分析中,一个词的含义可能依赖于其前后出现的词。 2、避免梯度消失问题:传统的 RNN(递归神经网络)常常面临梯度消失问题,这使得它们难以学习长距离的依赖关系。LSTM 使用门控机制,允许它们保留或忘记信息,从而有效缓解了这个问题。 3、上下文理解:在文本数据中,相同的词在不同的上下文中可能有不同的含义。LSTM 能够比简单模型更好地捕捉这种上下文信息。 4、灵活性:LSTM 可以堆叠成多层,允许更深的架构来捕捉数据中更复杂的模式。 5、验证有效性:LSTM 已在各种 NLP 任务中得到广泛应用和验证,在许多情况下表现出最先进的性能。 总的来说,LSTM 是情感分析的强大选择,因为它们能够有效处理和学习文本数据的序列,捕捉理解情感所必需的语言细微差别。

在量化金融或者证券自营业务领域,股票的资讯新闻情感分析结果对于交易员或者专业机构投资者的决策参考具有重大意义,本文阐述LSTM模型在股票新闻资讯数据情感分析中的应用。

首先数据接入和整合,一般从路透或者彭博终端接入新闻资讯数据,按照证券标的和时间维度整合,路透会提供一些内部分析后的情感分析标签数据,可以用来做训练和测试。

使用LSTM神经网络对资讯新闻数据进行情感分析的基本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值