千寻和省cors精度对比_测量员实操攻略:解析省CORS和千寻CORS账号区别及其如何选择运用...

在测绘界说到CORS、CORS账号,想必大家都不陌生,CORS—连续运行卫星定位服务系统,现在多代指网络RTK,是在传统RTK的基础上发展出来的一种新兴技术。它是由多个参考站组成的一个网络,统一把数据传送到服务器,服务器通过优化软件和移动站的位置将最近的一个基站的数据传递给移动站,或者在移动站附近虚拟出一个基站信息来供移动站进行差分解算。用户只需一台接收机即可进行厘米级的实时快速定位。

目前国内“CORS网”系统主要有两大巨头:

一、省cors账号

由国家测绘部门组织建设的“全国卫星导航定位基准服务系统”,像我们购买的省级cors网、县级cors网这样的区域cors都属于这个系统的产物。

它在各区域独立运营,技术、服务也相对独立。有关信息成果,主要在本地区、本行业内交流共享,难以实现跨地区、跨行业的系统整合。这会给那些跨区域作业的测量人员带来一些不必要的困扰和成本。

二、千寻cors账号

千寻位置建设和运营的国家北斗地基增强系统—“全国一张网”。该系统以北斗导航系统为主体,兼容GPS、GLONASS、伽利略等卫星导航系统信号。实现了统一规划、组网及跨区域无缝服务,同时支持大规模、高并发的基准站及用户接入,突破了行业瓶颈,为各类市场及应用提供更低成本的服务,但由于受千寻官方政策所限,千寻临时账号、千寻天账号购买难度高,测绘界大多推崇从cors官方网购得,性价比高,能为经常使用千寻临时账号的测量员,省去一笔费用。

千寻位置的服务没有聚焦于某个特定领域,是基于RTK(载波相位差分)技术开发的能够为全国大部分地区提供位置数据的服务。覆盖范围可以达到全国32个省市,面向测绘行业的就有千寻知寸-FindCM、千寻见微-FindMM、千寻云迹-FindTrace等服务,而普通的测量用户们经常用到的就是其中的千寻知寸-FindCM,厘米级精度服务,一个CORS账号全国通用。

三、使用千寻知寸FindCM服务流程

1.您在购买千寻知寸服务后,会向您发送一个差分账号和密码。

2.您需要根据差分账号和密码,到终端设备(GNSS接收机)上配置CORS参数。

1)地址

2)端口

端口:8001——对应坐标框架ITRF2008——参考历元2016.0

端口:8002——对应坐标框架WGS84——参考历元2005.0

端口:8003——对应坐标框架CGCS2000——参考历元2000.0

3)Mountpoint/源/挂载点

RTCM32_GGB或RTCM30_GG

粒子群算法Particle Swarm Optimization,PSO)是一种优化算法,用于解决各种优化问题。下面是一个使用Python实现的粒子群算法代码示例: ```python import random class Particle: def __init__(self, dim): self.position = [random.uniform(-5, 5) for _ in range(dim)] self.velocity = [random.uniform(-1, 1) for _ in range(dim)] self.best_position = self.position.copy() self.best_fitness = float('inf') def update_velocity(self, global_best_position, w, c1, c2): for i in range(len(self.velocity)): r1 = random.random() r2 = random.random() cognitive_component = c1 * r1 * (self.best_position[i] - self.position[i]) social_component = c2 * r2 * (global_best_position[i] - self.position[i]) self.velocity[i] = w * self.velocity[i] + cognitive_component + social_component def update_position(self): for i in range(len(self.position)): self.position[i] += self.velocity[i] if self.position[i] < -5: self.position[i] = -5 elif self.position[i] > 5: self.position[i] = 5 def evaluate_fitness(self): # 这里根据具体的优化问题来定义适应度函数 x, y = self.position[0], self.position[1] fitness = (x - 2) ** 2 + (y - 3) ** 2 if fitness < self.best_fitness: self.best_fitness = fitness self.best_position = self.position.copy() def particle_swarm_optimization(dim, num_particles, max_iterations): particles = [Particle(dim) for _ in range(num_particles)] global_best_position = None global_best_fitness = float('inf') for _ in range(max_iterations): for particle in particles: particle.evaluate_fitness() if particle.best_fitness < global_best_fitness: global_best_fitness = particle.best_fitness global_best_position = particle.best_position.copy() for particle in particles: particle.update_velocity(global_best_position, 0.5, 1, 2) particle.update_position() return global_best_position, global_best_fitness # 示例使用二维空间中的粒子群算法来求解(x-2)^2 + (y-3)^2 的最小值 best_position, best_fitness = particle_swarm_optimization(2, 50, 100) print("Best position:", best_position) print("Best fitness:", best_fitness) ``` 这段代码实现了一个简单的粒子群算法,用于求解二维空间中函数 (x-2)^2 + (y-3)^2 的最小值。代码中的参数可以根据具体问题进行调整。在每次迭代中,粒子根据自身的速度和位置更新策略来更新自己的位置,并根据新位置计算适应度值。全局最优解是所有粒子中适应度值最小的解。最后,算法返回全局最优解的位置和适应度值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值