任何物体都可以看作若干基本几何体构成的。
基本几何体:平面立体、曲面立体
平面立体:棱柱、棱锥、棱台等
曲面立体: 圆柱、圆锥、球等
棱柱:这里先讨论正棱柱的画法
正棱柱分:按正多边形的边数有正三棱柱、正四棱柱、正五棱柱、正六棱柱等。
下面以正五棱柱为例介绍三视图画法。
正五棱柱按下图所示方位放置在H、Ⅴ、W三面投影体系
上下底与水平面H平行,五棱柱的一个侧面与正面H平行 如下图

分析:正五棱柱上下底面为正五边形,己知它的内接圆半径。
确定各图的基准线

先画水平面投影,作圆的正五边形,然后按照投影关系画主视图。

说明:主视图中两条虚线为,3丶4两个点对应垂直于水平面的两条棱的投影,因为从前向后看即沿YO方向看时,两棱不可见,不可见边用虚线表示。
画左视图

左视图上下两底的高度按投影关系画
五条侧棱分别按俯视图的三个尺寸画出
从左到右投影时5对应棱的投影把2挡住
4对应棱的投影把3棱投影挡住