计算机学科前沿知识,计算机学科前沿.doc

本文探讨了彩色图像分割在计算机视觉中的重要性,主要分为基于边缘检测、基于区域和神经网络法等方法。边缘检测利用图像的色彩变化检测边缘,如Prewitt算子和多尺度边缘检测。区域分割包括阈值法、聚类法和区域生长法,其中聚类法如模糊C均值聚类被提及。这些技术在图像处理中有着广泛应用。
摘要由CSDN通过智能技术生成

计算机学科前沿

目 录

摘要:图像分割是图像处理的主要问题,也是计算机视觉领域低层次视觉中的主要问题。彩色图像是对外部客观世界最为逼真的描述。

从分割的方法来说,灰度图像和彩色图像的区别,主要表现在每一个象素的描述上,前者是在一维亮度空间上,而后者是在三维颜色空间上。彩色图像比灰度图像包含更多的信息,是对客观世界更为逼真的描述,因此,在很多情况下对彩色图像的分割很有必要。从分割的原理上看,彩色图像和灰度图像的分割是一样的,都是基于象素数值的相似性和空间的接近性,只是对象素属性的考察以及特征提取等技术由一维空间转向了高维空间。目前提出的彩色图像分割方法没有统一的分类方法,本文将其分为:基于边缘检测的方法、基于区域的方法、神经网络法以及其他技术方法。

1 基于边缘检测的方法

边缘检测通过检测包含不同区域的边缘来解决图像分割问题,边缘检测基于不同区域的彩色特征变化往往比较剧烈,一般是利用图像一阶导数的极大值或二阶导数的过零点信息来提供判断边缘点的基本依据。彩色图像可以看作三维(RGB)的灰度图像,文献提出了基于矢量Prewitt 算子的多尺度边缘检测方法,引入了多尺度组合正则化处理,多尺度的依据是图像局部的微分响应,可以检测到变化最剧烈的尺度上的边缘,文献提出了彩色梯度算子,将灰度边缘的模板算子扩展到彩色图像的边缘检测,并在均匀彩色空间中检测彩色边缘,算法简单,并可以得到有效边缘,文献提出了用可分离的二维二进小波变换进行边缘检测,文献对此进行了改进,并用其进行边缘生长,实现了彩色图像的分割,最大程度的保证了边缘的封闭性,并通过找出碎边缘区周转的大区域,对高细节区也进行了分割;文献提出了一种综合HIS 空间中的归一化色调值和RGB 空间中的颜色对比度的算子,对已进行平滑的图像进行边缘检测,得到的边缘噪声较小,基本上没有丢失。

2 基于区域的分割根据图像数据的特征并图像空间划分为不同的区域,对于彩色图像来说,数据特征可以是彩色特征,也可以是彩色值变换所得到的特征。常用的区域技术有阈值法、聚类法、区域生长法。2. 1 阈值法阈值法用一个或几个阈值对某一特征的直方图进行分类,认为图像中特征值在同一个范围内的象素属于同一个物体. 文献提出了基于色调(H)直方图彩色图像分割,基于一维特征标量(C =[W1W2 W3]*[H S I]T)的双阈值分割算法。阈值的选择可以采用人工交互的方式,也可以基于先验知识进行选择。基于H、C 的直方图统计扩展了灰度图像的阈值分割算法。但在第一种方法对于原始图像中颜色数较少,目标颜色单纯,且波长分布相对分散的情况,可以得到较好的结果。但由于它只考虑了色调值,而没有考虑光强和饱和度等对颜色的影响,因此,在不同的光照和饱和度下,很难得到较好的效果。基于C 的方法克服了上述缺点,但由于内部聚类不紧凑,有时会出现空洞。对于上述缺点,Ong 和Hew 提出了迭代阈值分割方法,能够有效的降低光照不均匀对分割效果的影响,文献人采用了归一化彩色空间技术,并利用B - 样条技术建立了一个自适应阈值函数,对细胞进行自适应阈值分割。2. 2 聚类法通过找到彩色空间中象素值的空间聚类,并把每一个图像象素指定到不同的聚类中来实现的。聚类法的关键是确定聚类准则。文献提出了综合聚类法,在合并初期,采用“最小色差准则”消除噪声色的影响,在合并后期,采用“最小误差准则”,保留了小区域,可以得到较好的效果,文献在Ohta 颜色空间里测试了阈值结合模糊C 均值聚类算法,先把特征比较明显的象素分成几个区域,然后运用模糊C 均值聚类算法把剩余象素归并到隶属度最大的区域里,完成分割,由于模糊C 均值聚类算法需要反复递归迭代,所以运算时间较长,并且是一种基于目标函数的聚类算法,容易陷入局部最小,文献提出了一种新的聚类算法,不是基于目标函数,而是对数据直接设计的一种迭代运算,并用此聚类法对彩色图像实现了分割,证明了该算法在无监督给出类数方面具有较好的鲁棒性,文献利用所取得的图像分割的成功经验,建立进行事例推理的典型事例库,实现了基于知识的聚类,并将其应用于磨粒图像,证明在实时性和准确性上,都取得较好的效果,文献提出一个修改的Akaike 信息准则,用来求解聚类,并将一个基于多数博弈论演化而来的标号算法用于求解分割所对应的优化问题,整个分割过程可以自动进行,该聚类方法还可应用到更高维的特征空间分析中,文献基于离散彩色视觉模型,提出了一种快速聚类算法,根据HSV 空间中的H 分量和图像空域分布进行聚类,提高了彩色图像分割的速度。

2. 3 区域生长法区域生长法从若干种子点或种子区域出发,按照一定的生长准则,对邻域象素点进行判别并连接,直到所有象

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值