自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(49)
  • 收藏
  • 关注

原创 Pycharm使用Anaconda虚拟环境

这个警告说明当前所选的后端是非交互式的(non-interactive),因此无法显示图像。这可能是因为 Matplotlib 的后端设置为 ‘Agg’,它是一个非交互式的后端。如果你想要在代码运行时交互式地显示图像,可以考虑使用其他后端,如‘TkAgg’或‘Qt5Agg’。这个错误通常涉及到 Matplotlib 的后端设置问题。Matplotlib 后端是控制图形渲染的引擎,可以尝试更改后端来解决这个问题。在你的代码开头加上这两行代码,尝试用 ‘Agg’ ,看看是否能够解决这个错误。

2024-05-13 10:44:42 443 1

原创 anaconda虚拟环境pytorch安装

注意:Pytorch官网首页目前只更新到支持DUDA12.1的,还没更新到支持CDUA12.3 GPU的安装,官网首页的命令安装后只支持CPU。使用的文中这个末尾带nvidia的之前版本的命令,安装后CUDA12.3可正常在环境中使用GPU的Pytorch。注意:这里查看一下,自己的显卡驱动所能支持的版本,我这显卡驱动支持cuda12.3,所以我安装的cuda和pytorch都很新,你只需要根据自己需要更改版本就好了。以上就是验证PyTorch是否安装成功的常用方法。在命令窗口中直接输入命令–回车安装。

2024-05-10 20:04:41 591 1

原创 《动手学机器学习》资源

(1)关于“代码可在线运行”:读者可以把GitHub上的代码下载下来,用任意支持ipynb格式的在线或本地工具运行,本书不提供在线运行的工具;(2)关于习题答案:本书不提供习题答案,读者自行练习。理论解读视频课程:可扫描书中二维码观看,也可通过。

2024-05-10 10:51:31 198

原创 Anaconda虚拟环境

创建虚拟环境首先要查看当前已有环境,打开Anaconda Prompt,输入。这个环境用的python版本是3.9版本的,如果默认创建,会在C盘!接下来问你是否要安装这些包,输入y。就可以进入virtual 环境中。说明,我们现在已经有这几个环境。此时就完成虚拟环境的安装了。(1)若要创建一个虚拟环境。(2)进入环境,输入命令。回答y,就可以完全移除了。可以看到环境已经创建。

2024-05-10 09:57:28 249 1

原创 Jupyter配置

(3)找到Jupyter Notebook(anaconda)的快捷方式,右键点击【属性】。在目标一行中,去掉最后面的C:\Users\YX\Desktop。(1)打开【Anaconda Prompt】,输入【jupyter notebook --generate-config】命令。从运行结果可知【jupyter_notebook_config.py】的位置。去掉前面的【#】,在单引号‘’中添加路径为事先新建的文件夹。(2)使用【记事本】打开。

2024-05-06 16:16:54 307 1

原创 Anaconda安装教程

Anaconda是一个数据科学平台,提供一个发行版的 Python 以及大量常用的数据科学包、库和工具。通过包含诸如 NumPy、Pandas、SciPy、Matplotlib等核心库,以及 Jupyter Notebook等开发工具,使数据分析、机器学习和数据可视化变得更加容易。Anaconda还包括一个包管理器 conda ,用于安装、更新和管理软件包,确保不同包之间的依赖关系得到妥善处理。

2024-05-06 15:30:23 515 1

原创 回归与聚类——K-Means(六)

随机设置K个特征空间内的点作为初始的聚类中心。对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别。接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)。如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行第二步过程

2024-04-26 10:53:06 570

原创 回归与聚类——模型保存与加载(五)

获取数据、划分数据集、标准化、预估器、保存模型、得出模型、模型评估。

2024-04-26 10:06:57 401

原创 分类算法——ROC曲线与AUC指标(九)

AUC只能用来评价二分类AUC非常适合评价样本不平衡中的分类器性能。

2024-04-25 10:27:44 239

原创 分类算法——模型评估(八)

假设这样一个情况,如果99个样本癌症,1个样本非癌症,不管怎样我全都预测正例(默认癌症为正例),准确率就为99%但是这样效果并不好,这就是样本不均衡下的评估问题。在分类任务下,预测结果与正确标记之间存在四种不同的组合,构成混淆矩阵(适用于多分类)问题:如何衡量样本不均衡下的评估?召回率:99/99 = 100%答:ROC曲线与AUC指标。

2024-04-25 10:03:34 654

原创 分类算法——逻辑回归(七)

逻辑回归是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛。逻辑回归的应用场景广告点击率是否为垃圾邮件是否患病金融诈骗虚假账号看到上面的例子,我们可以发现其中的特点,那就是都属于两个类别之间的判断。逻辑回归就是解决二分类问题的利器。逻辑回归的原理1输入逻辑回归的输入就是一个线性回归的结果。2激活函数sigmoid函数分析:回归的结果输入到sigmoid函数当中输出结果:

2024-04-24 10:45:26 850

原创 回归与聚类——岭回归(四)

岭回归,其实也是一种线性回归。只不过在算法建立回归方程时候,加上正则化的限制,从而达到解决过拟合的效果。带有L2正则化的线性回归——岭回归。

2024-04-23 11:53:18 308

原创 回归与聚类——过拟合与欠拟合(三)

欠拟合过拟合分析第一种情况:因为机器学习到的天鹅特征太少了,导致区分标准太粗糙,不能准确识别出天鹅。第二种情况:机器已经基本能区别天鹅和其他动物了。然后,很不巧已有的天鹅图片全是白天鹅的,于是机器经过学习后,会认为天鹅的羽毛都是白的,以后看到羽毛是黑的天鹅就会认为那不是天鹅。过拟合:一个假设在训练数据上能够获得比其他假设更好的拟合,但是在测试数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂)欠拟合:一个假设在训练数据上不能获得更好的拟合,并且在。

2024-04-23 11:32:03 476

原创 回归与聚类——性能评估(二)

回归当中的数据大小不一致,是否会导致结果影响较大。所以需要做标准化处理。均方误差(Mean Squared Error)MSE)评价机制:注:y^i为预测值,y-为真实值我们也可以尝试去修改学习率此时我们可以通过调参数,找到学习率效果更好的值。

2024-04-23 10:48:46 525

原创 机器学习——分类算法总结

2024-04-22 16:34:12 381

原创 回归与聚类——线性回归(一)

(1)定义与公式线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

2024-04-22 11:52:48 1327

原创 分类算法——集成学习方法之随机森林(六)

在当前所有算法中,具有极好的准确率能够有效地运行在大数据集上,处理具有高维特征的输入样本,而且不需要降维能够评估各个特征在分类问题上的重要性。

2024-04-19 17:29:05 681 1

原创 分类算法——决策树(五)

优点:简单的理解和解释,树有可视化缺点:决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合改进:减枝cart算法(决策树API当中已经实现,随机森林参数调优有相关介绍)随机森林注:企业重要决策,由于决策树很好的分析能力,在决策过程应用较多,可以选择特征信息熵、信息增益的计算DecisionTreeClassifier进行决策树的划分export_graphviz导出到dot文件。

2024-04-18 11:26:54 1170

原创 分类算法——文章分类(五)

优点:朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。对缺失数据不太敏感,算法也比较简单,常用于文本分类。分类准确度高,速度快。缺点:由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好。条件概率、联合概率计算方式与特征独立的关系贝叶斯公式的计算。

2024-04-17 19:07:53 428

原创 分类算法——朴素贝叶斯(四)

上式中,P(产品,超重|喜欢)和P(产品,超重)的结果均为0,导致无法计算结果。这是因为样本量太少了,不具有代表性,本来现实生活中,肯定是存在职业是产品经理并且体重超重的人的,P(产品,超重)不可能为0;而且事件“职业是产品经理”和事件“体重超重”通常被认为是相互独立的事件,但是,根据我们有限的7个样本计算“P(产品,超重)=P(产品)P(超重)”不成立。也就是说,朴素贝叶斯,之所以朴素,就在于假定了特征与特征相互独立。4、在女神喜欢的条件下,职业是程序员,体重是超重的概率?1、女神喜欢的概率?

2024-04-17 11:53:14 603

原创 分类算法——模型选择与调优(三)

数据介绍:将根据用户的位置,准确性和时间戳预测用户正在查看的业务官网:https://www.kagge.com/navoshta/grid-knn/data。

2024-04-16 18:25:49 633

原创 分类算法——KNN算法(二)

1KNN原理K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法,总体来说KNN算法是相对比较容易理解的算法。定义如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。来源:KNN算法最早是由Cover和Hart提出的一种分类算法、距离公式两个样本的距离可以通讨如下公式计算,又叫欧式距离距离计算有:曼哈顿距离(绝对值距离)、明可关斯基距离2电影类型分析其中?

2024-04-12 15:49:10 561

原创 分类算法——sklearn转换器和估计器(一)

在sklearn中,估计器(estimator)是一个重要的角色,是一类实现了算法的API。从中可以看出,fit_transform的作用相当于transform加上fit。标准化:(X- mean) / std。

2024-04-12 14:54:58 978

原创 机器学习——概述总结

总图:分部1:分部2:分部3:

2024-04-11 12:27:45 176

原创 机器学习—特征预处理和降维(四)

通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程。

2024-04-11 11:17:46 1040

原创 机器学习—特征工程(三)

特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。意义︰会直接影响机器学习的效果例一:机器学习算法——统计方法——数学公式文本类型—>数值例二:类型——>数值。

2024-04-09 18:03:53 962

原创 机器学习—数据集(二)

Python语言的机器学习工具Scikit-learn包括许多知名的机器学习算法的实现Scikit-learn文档完善,容易上手,丰富的API目前稳定版本0.19.1。

2024-04-09 15:58:53 929

原创 机器学习—概述(一)

数据模型预测从历史数据当中获得规律?这些历史数据是怎么的格式?

2024-04-08 20:15:31 342

原创 Python操作Neo4j数据库

建立Neo4j链接!pip install neo4j pyahocorasick numpy pandas --no-warn-script-location定义数据操作对象from neo4j_driver import Neo4jConnection, Node链接并查看节点数量conn = Neo4jConnection('neo4j://localhost:7687/', 'neo4j', 'Lorne@2022')conn.create(Node("Person",

2024-04-08 18:58:24 318

原创 机器学习和深度学习

机器学习是一种人工智能领域的分支,旨在使计算机系统能够自动从数据中学习和提高性能,而不需要明确的编程。简而言之,机器学习是利用经验来训练计算机系统,使其能够从输入数据中提取规律,并对新数据进行预测或分类。深度学习是机器学习的一个分支,它利用多层神经网络来处理复杂的数据和任务。深度学习中的神经网络由许多节点和层组成,每个节点都会接收一些输入,并计算出相应的输出。通过不断地调整网络参数,深度学习可以自动发现数据中的复杂模式,并产生高质量的预测或分类结果。

2024-04-07 21:16:52 523

原创 jupyter代码的json2csv

【代码】jupyter代码的json2csv。

2024-03-29 20:51:16 158 1

原创 Jupyter服务器下Neo4j操作

建立Neo4j链接!pip install neo4j pyahocorasick numpy pandas --no-warn-script-location定义数据操作对象from neo4j_driver import Neo4jConnection, Node链接并查看节点数量conn = Neo4jConnection('neo4j://localhost:7687/', 'neo4j', 'Lorne@2022')conn.create(Node("Person",

2024-03-29 20:45:26 244 1

原创 计算机前沿知识

云存储与云数据库,在线教育,智能仓储,云安全,小A(Avast),金山云、瑞星安全云,云安全融合了并行处理、未知病毒等新兴技术,通过分布在各领城的客户端对互联网存在异常的情况进行监测、获取最新病毒程序信息)此外,模型可能能够生成多样化的输出,即便对于相同的文本描述也能产生不同的视频,以展现创造性和多样性。即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。许多大模型采用预训练加微调的策略。

2024-03-27 16:53:04 864

原创 计算机考研复试可能的40个问题

自我介绍一般都逃不过,大家一定要提前做好准备,经历远远比名字更重要。时间通常不会超过一分钟。最好再准备一个30秒版本,重点介绍你做过什么研究、论文题目是什么等学术方面的经验,其他证明自己能力的事情都可以简要介绍。另外,有些老师会根据你的自我介绍来提问题、因此,你可以在自我介绍里设置"陷阱”",比如说一个老师很可能感兴趣的技能(学术上的),然后老师追问你就可以充分的展示自我了。

2024-03-27 10:18:50 1002

原创 小程序_成语词典

现在网络上第三方的免费数据资源越来越少了,这里推荐使用聚合数据的免费接口来实现本次实验案例。首先访问聚合数据官网https://www.juhe.cn/,点击右上角的“注册”按钮进入注册页面,用手机号或邮箱进行账号注册。注册完成后如果希望获得更多的免费接口使用资源和请求次数,建议登录进入个人中心(https://dashboard.juhe.cn/home)选择“账号管理”->“实名认证”上传有效证件做一下认证,如下图所示。获得审批通过之后就可以去申请免费的接口资源了。

2024-03-27 09:52:37 855

原创 小程序服务器部署

每一个小程序在与指定域名地址进行网络通信前都必须将该域名地址添加到管理员后台白名单中。

2024-03-27 09:31:32 1271

原创 小程序开发期末复习题

在学习小程序网络API一章时实验课制作了一个简易的天气预报小程序,请描述开发该项目需要的准备工作、页面设计和功能实现,并谈谈你的心得体会。答:1 + 3+ x(2分) {{x-y}}会代入数字进行算数运算,{{z}}直接替换为数字,+号和x都直接显示字面内容。页面设计:垂直布局(flex-direction:column),水平方向居中(align-items:center),使用了、功能实现:使用小程序网络API中的wx.request发送网络请求,提供key和需要查询的城市,获取返回值json格式。

2024-03-27 09:19:41 334

原创 人工智能相关(二)

不确定性推理是指那种建立在不确定性知识和证据的基础上的拉理,它实际上是一种从不确定的初始证据出发,通过运用不确定性知识。最终推出既保持一定程度的不确定性,又是合理和基本合理的结论的推理过程。一个人工智能系统,由于知识本身的不精确和不完全,采用标准逻辑意义下的推理方法难以达到解决问题的目的。对于一个智能系统来说,知识库是其核心。在这个知识库中,往往大量包含模糊性、随机性、不可靠性或不知道等不确定性因素的知识。为了解决这种条件下的推理计算问题,不确定性推理方法应运而生。

2024-03-26 20:28:59 730

原创 人工智能相关(一)

它仅在线性回归的基础上,在特征到结果的映射中加入了一层signoid函数(非线性)映射,即先把特征线性求和,然后使用 sigmoid函数来预测。Sigmoid 是归一化的函数,可以把连续数值收敛至[0,1]的范围,提供了一种将连续型的数据离散化为。是研究、开发用于模拟、延申和扩展人的智能的理论、方法、技术以及应用系统的一门新的技术科学。越高,所以决策树的生长过程也是不断的将数据的不纯度降低的过程,希望最后得到的分类结果纯的很高,也就是准确性很高。是人工智能的核心,是使计算机具有智能的根本途径。

2024-03-26 20:13:27 1069

原创 python-numpy

1.NumPy是用于科学计算的一个开源Python扩充程序库,它为Python提供了高性能的数组与矩阵运算处理能力.NumPy为Python带来了真正的多维数组功能,并且提供了丰富的函数库处理这些数组。它将常用的数学函数都支持向量化运算,使得这些数学函数能够直接对数组进行操作,将本来需要在Python级别进行的循环,放到C语言的运算中,明显地提高了程序的运算速度。2.pandas库大量依赖NumPy数组来实现其Series以及DataFrame对象。

2024-03-26 19:28:24 1444

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除