怎么区别全局还是本地_[张量系列DLC] 直积和张量积有何区别? 矩阵和矩阵的张量积怎么还是个矩阵?...

b93180b8b28582176f0e75398a62f9d3.png

本文部分概念为个人理解, 暂未寻求文献支持.

我们能任意比对不同的张量运算得益于 Masaki Notation 能有效地解构任意张量运算.

以本文为例, 理论上任意定义的张量积都可以用指标符号拆解成分量表示:
┣ 例如定义运算
,

┗ 则可等价地表示为
.

目録

1. 直积与张量积的定义

1.1. 直积和张量积不是一回事
1.2. 张量积用来构造高阶张量
1.3. 喀兴林先生的书上定义的矩阵张量积
1.4. 二者有时候只相差一个很微妙的小细节

2. 降维张量积与老百姓张量积

2.1. 降维张量积的定义
2.2. 用 Masaki Notation 来计算降维张量积
2.3. 降维张量积的具体计算实例
2.4. 降维张量积和老百姓张量积可以是一回事

[附录A] 张量的初级理解


1. 直积与张量积的定义

1.1. 直积和张量积不是一回事, 直积生成有序元素组:

.
这个也叫 Cartesian product, 说白了就是打包处理, 并没有给予任何额外的操作.
┣ 举个例子就是对

┗ 有
.

1.2. 张量积用来构造高阶张量:

.
上面采用了 Masaki Notation, 不懂什么是张量可参见 [附录A].

1.3. 在喀兴林先生的书上(他管这个叫直积, 这是不好的)定义矩阵的张量积为:

我就简单概括一下要点, 该做法当然至少可以安全地推广到任意有限维:

.
.
.
.

1.4. 二者有时候只相差一个很微妙的小细节:

比如我们现在在矢量空间上凭空定义两个括号

必须是双线性的运算, 而
就不一定了.
因为上面的意思是对一个俩矢量的张量积进行映射, 张量积是自带线性性的.
┗ 而下面这个则是对俩矢量构成的有序对进行映射, 这并不附带什么线性要求.

2. 降维张量积

2.1. 降维张量积的定义:

那么, 虽然我们已经知道直积与张量积不是一回事了,
┣ 但老百姓口中的张量积和喀兴林先生书上的直积(写作直积读作张量积)是不是一回事呢?
┗ 答案是: 基本上是一回事, 且下面我们将论证这一点.

俩矩阵张量积完还是矩阵, 这真的是张量积吗?

本来俩 (1,1) 型张量进行张量积应该得到 (2,2) 型张量对吧?
┣ 但是你二维的纸上它写不出四维的玩意儿来, 所以我们把四维的矩阵平铺开摆在二维纸上.
┗ 就是说如果你想要在不损失信息的情况下降维度, 那么要付出的代价就是升阶数咯.

为了方便我们看出端倪, 这里采取更容易追踪的写法:

让我们看看这个降维系数对应:

,
,

┣ 不难发现这个过程就是用阶进制数做了一个序列替代:
.

你一定发现了一个事实: 这样的降维操作应该不唯一罢.

确实, 但我们这里就和国际接轨, 取这样的约定, 事实上不同约定之间只差一个幺正变换.

最后你会在意的就是说, 降维张量积和老百姓张量积是否是一回事.

答案是可以是, 我们将在最后阐述这一点.

2.2. 用 Masaki Notation 来计算降维张量积:

让我们以二维矩阵为例观察一下这个表达效果:

设定
, 展开写就是:

我们看看
的表达式:

总结一下就是
, 这里当然也采用了重复指标求和.

┣ 考虑到前面的阶进制数序列替代
,

┣ 就有:
.

┣ 推广到一般就是
.

┗ 而我们知道
.

这样一来我们就有结论:


┣ 其中
都是 (2,2) 型张量, 就是说:
.

┣ 即
.

┗ 结合第一条就是还要求有
.

综上所述, 我们可以采用如下约定来计算降维升阶的矩阵张量积:

.

2.3. 降维张量积的具体计算实例:

学过群论的同志一定知道降维张量积满足关系

.
这个我看好像不少书为了证明这一点都是大费口舌.

实际上通过无敌的 Masaki Notation 可以极其简洁地证明这一点:

首先要意识到这四个都是 (2,2) 型张量:

然后采用我们降维张量积的指标计算约定:
.

┣ 即





.

┗ 一下子就证明完了, 很牛啤对吧?

2.4. 降维张量积和老百姓张量积可以是一回事:

其实如果你永远只采取指标运算的话, 根本不会碰上这种问题.
┗ 又一次地显示了指标运算的优越性, 不过指标运算的缺点就是看起来繁琐.

为什么我们说可以是一回事呢?

因为这要取决于你如何定义运算
.

┣ 一个极其自然的定义就是
.

┣ 那如果你这样定义这个运算的话翻译成指标运算就是:

┣ 因为这样就有:
.

而降维张量积的运算约定为:


┗ 这说明
.

我们能看到二者是相容的, 所以这样的定义就可以让我们日后对二者不做任何区分.


[附录A] 张量的初级理解

✦ 张量是基于矢量与对偶矢量定义的概念, 本质是一个没有感情的映射机器.

显然我们要先定义一个数域
上的矢量空间
, 然后定义一个内积运算.

然后由内积运算诱导出一个对偶矢量空间
, 诱导方法如下:

┣ 内积运算
的作用是对
.

┣ 显然我们可以很自然地建立一个映射
.

┣ 具体写出来就是
,
就是我设计的一个符号罢了.

┣ 那么
满足什么性质呢? 我定义它满足对
.

┣ 说玄乎点
就是一个线性泛函, 意思是它作用到矢量上会给出一个数.

┣ 显然这样一来我们就构建了一个与
同构的对偶空间
.

┗ 对
, 一定
与之对应,
里的元素我们称之为对偶矢量.

✦ 张量是如此的冷酷, 你只要把足够矢量和对偶矢量投入这台机器, 他就会给出一个数.

其实张量有无数多种, 但可以按照需要投入的矢量与对偶矢量的数目进行分类.

比如说 (1,1) 型张量就是投入

个对偶矢量与
个矢量就得出一个数.
我们可以将 (1,1) 型张量记为
, 它对
.

比如说 (0,1) 型张量就是投入

个矢量就得出一个数.
┣ 我们可以将 (0,1) 型张量记为
, 它对
.

┣ 其实不用这样记, 因为我们的老朋友对偶矢量就是 (0,1) 型张量.
┗ 我是说
的定义不就是对
吗?

比如说 (2,1) 型张量就是投入

个对偶矢量与
个矢量就得出一个数.
可以将 (2,1) 型张量记为
, 它对
.

聪明的你, 一定不需要我再继续比如了吧, 比如说当然可以有 (114,514) 型张量啊.

✦ 是不是太抽象力? 我可以举一个同构的例子, 让你直观感受一下:

如果说矢量可以用列矩阵表示, 而对偶矢量可以用行矩阵表示的话, 那方阵是什么?

方阵左乘对偶矢量, 右乘矢量, 得到一个数, 所以方阵其实就相当于 (1,1) 型张量.

对偶矢量左乘矢量, 也得到一个数, 用这个观点来看是什么意思?

你可以说对偶矢量是 (0,1) 型张量, 你也可以说矢量是一个 (1,0) 型张量, 观点是相对的.
┗ 然而可惜贫瘠的线性代数似乎根本表示不出这三类之外的张量了, 只能是你自己类比了.

最后需要说明的一点是,

型张量如果没放满会怎样? 会退化.
(2,2) 型张量投入俩对偶矢量, 再投入俩矢量会得到一个数, 这是前面的定义.
┣ (2,2) 型张量如果只投入一个对偶矢量呢? 它会变成 (1,2) 型张量.
┗ 即
还需要投入
个对偶矢量与
个矢量就得出一个数.

我知道你一定还是对张量具体是什么充满了疑惑, 别想了, 超纲了.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值