极限与连续知识点总结_数学分析原理【知识点整理】【函数的极限&连续函数】...

20e31d4ad66d8697b3f939cb1710a1a5.png

CONTINUITY [连续性]

终于引入函数的概念了!函数由三部分决定:映射关系、值域、定义域。通常表示为:

或者:

本章主要讨论赋距空间下的函数性质。

Limits of Functions [函数的极限]

Def. [函数的极限] (4.1)

Condition of the limits of function :

More precisely:

Let and be metric space; suppose , maps into , and is a limit point of . We write as , or

if there is a point with the following property: For every there exists a such that

for all points for which

The symbols and refer to the distances in and , respectively.

Theorem [函数极限的序列表述] (4.2)

Let , , , and be as in 【Definition 4.1】. Then

if and only if

for every sequence in such that

Proof. "": Suppose (1) holds. Choose in satisfying (3). Let be given. Then there exists such that if and . Also, there exists such that implies . Thus, for , we have , which shows that (2) holds.

"": Conversely, suppose (2) is false. Then there exists some such that for every there exists a point (depending on ), for which but . Taking , we thus find a sequence in satisfying (3) for which (2) is false.

("" 简述) Suppose (1) holds. .

Then , , s.t. .

Also for such fixed , , s.t. .

Combine such two, we have , , s.t. .

Corollary (4.2)

If has a limit at , this limit is unique.

Theorem [ 中函数的代数运算] (4.3)

If and map into , we define and by

and if is a real number, .

Theorem [复数函数的代数运算] (4.4)

Suppose , a metric space, is a limit point of , and are complex functions on , and

Then

(a) ;

(b) ;

(c) , if .

Remark (4.4)

If and map into , then (a) remains true, and (b) becomes (b') .

Continuous Functions [连续函数]

Def. [连续函数] (4.5)

Suppose and are metric spaces, , , and maps into . Then is said to be continuous at if for every there exists a such that

for all points for which .

Note. 简述定义: is continous: For , . Then , , s.t. .

Theorem [连续函数的等价叙述] (4.6)

In the situation given in 【Def. 4.5】, assume also that is a limit point of . Then is continous at if and only if

Theorem [连续函数复合依然连续] (4.7)

Suppose , , are metric spaces, , maps into , maps the range of , , into , and is the mapping of into defined by

If is contiunous at a point and if is continuous at the point , then is continuous at .

This function is called the composition or the composite of and . The notation

is frequently used in this context.

Proof.Let be given. Since is continuous at , there exists such that

Since is continuous at , there exists such that

It follows that

if and . Thus is continuous at .

Theorem [连续函数的逆映射函数] (4.8)

A mapping of a metric space into a metric space is continuous on if and only if is open in for every open set .

Proof. "": Suppose is continuous on and is an open set in . We have to show that every point of is an interior point of .

So, suppose and . Since is open, there exists such that if , and since is continuous at , there exists such that if . Thus as soon as .

"": Conversely, suppose is open in for every open set in .

Fix and , let be the set of all such that . Then is open; hence is open; hence there exists such that as soon as . But if , then , so that .

This complete the proof.

Corollary (4.8)

A mapping of a metric space into a metric space is continuous if and only if is closed in for every closed set in .

Note. Consider the complement is open, since for every .

Theorem [代数运算保连续性] (4.9)

Let and be complex continuous functions on a metric space . Then , , and are continuous on .

Proof. At limit points, the statement follows 【Theorem 4.4】 and 【Theorem 4.6】.

Theorem [向量函数的连续性] (4.10)

(a) Let be real functions on a metric space , and let be the mapping of into defined by

then is continuous if and only if each of the functions is continuous.

(b) If and are continuous mappings of into , then and are continuous on .

The functions are called the components of . Note that is a mapping into , whereas is a real function on .

Proof. Part (a) follows from the inequalities

(分距离不大于总距离)

for . Part (b) follows from (a) and 【Theorem 4.9】.

Remark

我们定义了赋距空间的子集的函数映射,但余集不起作用,所以之后会不谈子集的映射,而直接谈赋距空间的映射,这样可以简化很多定理的描述。

【小亦 2020-12-27 03:12】于深圳

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值