极限与连续知识点总结_2021考研数学 高数第一章 函数 极限 连续

本文详细总结了考研数学中高数第一章的极限与连续知识点,包括极限的存在准则(夹逼准则、单调有界准则),8种常用的求极限方法,以及函数的连续性定义、间断点分类和闭区间上连续函数的性质。
摘要由CSDN通过智能技术生成

55528d507270354603db5e19824b56b1.png

目录

  • 目录
  • 1. 背景
  • 2. 极限的存在准则
    • 2.1. 夹逼准则
    • 2.2. 单调有界准则
  • 3. 常用的求极限方法(8种)
    • 3.1. 方法1 用基本极限求极限
    • 3.2. 方法2 利用等价无穷小代换
    • 3.3. 方法3 利用有理运算法则求极限
    • 3.4. 方法4 利用洛必达法则求极限
    • 3.5. 方法5 利用泰勒公式求极限
    • 3.6. 方法6 利用夹逼原理求极限
    • 3.7. 方法7 利用单调有界准则求极限
    • 3.8. 方法8 利用定积分定义求极限(见第五章)
  • 4. 函数的连续性
    • 4.1. 连续的定义
    • 4.2. 间断点的分类
    • 4.3. 闭区间上连续函数的性质
  • 5. 总结

1. 背景

前段时间复习完了高数第一章的内容,我参考《复习全书·基础篇》和老师讲课的内容对这一章的知识点进行了整理,形成了这篇笔记,方便在移动设备上进行访问和后续的补充修改。

2. 极限的存在准则

2.1. 夹逼准则

若存在

,当
时,
,且
,则
.

2.2. 单调有界准则

单调有界函数必有极限,即单调增(减)有上(下)界的函数必有极限。


3. 常用的求极限方法(8种)

3.1. 方法1 用基本极限求极限

  • 常用的基本极限

注:趋向于无穷时看高次项,趋向于0时看低次项

  • ” 型极限常用结论

,且
,则

可以归纳为以下三步:

  1. 写标准形式:原式
  2. 求极限:
  3. 写结果:原式
    .

3.2. 方法2 利用等价无穷小代换

  • 常用的等价无穷小

  • 证明(1.8-1.16) 常用的等价无穷小都可以用洛必达法则证明
  • 推论

  • 证明(1.17)

3.3. 方法3 利用有理运算法则求极限

3.4. 方法4 利用洛必达法则求极限

  • 使用条件
    • 可导
    • 则洛必达法则可使用至求出
      ,即
      阶导数
    • 连续导数
      • 则洛必达法则可使用至求出
        ,即
        阶导数
    • 可导,且求出
      后极限仍为
      • 则考虑使用等价无穷小导数定义

3.5. 方法5 利用泰勒公式求极限

  • 定理(带Peano余项的泰勒公式) 设
    阶可导,则

特别是当

时,为麦克劳林公式

  • 几个常用的泰勒公式

3.6. 方法6 利用夹逼原理求极限

  • 常用结论

其中

  • 证明公式1.25

,则

根据夹逼准则

3.7. 方法7 利用单调有界准则求极限

  • 基本不等式

3.8. 方法8 利用定积分定义求极限(见第五章)


4. 函数的连续性

4.1. 连续的定义

  • 连续的定义

在点
的某领域内有定义,若
则称
在点
处连续。
  • 左连续的定义

,则称
在点
处左连续。
  • 右连续的定义

,则称
在点
处右连续。
  • 定理

函数

在点
处连续的充要条件是
在点
既左连续又右连续。

4.2. 间断点的分类

  • 第一类间断点
    • 定义:左右极限都存在的间断点成为第一类间断点
      • 可去间断点
        • 定义:左右极限都存在相等的间断点成为可去间断点
      • 跳跃间断点
        • 定义:左右极限都存在不相等的间断点成为跳跃间断点
  • 第二类间断点
    • 定义:左右极限至少有一个不存在的间断点称为第二类间断点
      • 无穷间断点
        • 定义:若
          , 则称
          的无穷间断点
      • 震荡间断点
        • 定义:左右极限振荡不存在的间断点,叫做振荡间断点,其中振荡是不可以解出的答案,极限完全不存在,如
          .
      • 其他

注:在答题时,一般来说,第一类间断点需要说明是可去间断点还是跳跃间断点,如无特殊要求,第二类间断点只需要声明为第二类间断点。

4.3. 闭区间上连续函数的性质

  • 最值定理
    • 在闭区间
      上连续,则
      上必有最大值与最小值
  • 有界性定理
    • 在闭区间
      上连续,则在
      上必有界
  • 介值定理
    • 在闭区间
      上连续,且
      ,则对于任意介于
      之间的数
      ,至少存在一点
      ,使
      .
    • 推论:若
      在闭区间
      上连续,则
      上可取到介于最小值m和最大值M之间的任何值
  • 零点定理
    • 在闭区间
      上连续,且
      ,则至少存在一点
      ,使
      .

5. 总结

  1. 函数
  • 性质
  • 复合

2. 极限

    • 极限概念与性质
    • 求极限
    • 无穷小阶的比较

3. 连续

    • 间断点类型
    • 闭区间上连续函数的性质
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值